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Introduction
 Asynchronous processes are abundant in the 

real world
 Telephone system, computer network, etc.

 Discrete-time and semi-Markov models are 
inappropriate for systems with asynchronous 
events

 Generalized semi-Markov (decision) 
processes, GSM(D)Ps, are great for this!
 Approximate solution using phase-type 

distributions and your favorite MDP solver
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Asynchronous Processes: 
Example

m1 m2

m1 up
m2 up

t = 0
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Asynchronous Processes: 
Example

m1 m2

m1 up
m2 up

m1 up
m2 down

m2 crashes

t = 0 t = 2.5
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Asynchronous Processes: 
Example

m1 m2

m1 up
m2 up

m1 up
m2 down

m1 down
m2 down

m1 crashesm2 crashes

t = 0 t = 2.5 t = 3.1
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Asynchronous Processes: 
Example

m1 m2

m1 up
m2 up

m1 up
m2 down

m1 down
m2 down

m1 down
m2 up

m1 crashesm1 crashes m2 rebooted

t = 0 t = 2.5 t = 3.1 t = 4.9
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A Model of Stochastic
Discrete Event Systems

 Generalized semi-Markov process 
(GSMP) [Matthes 1962]
 A set of events E
 A set of states S

 GSMDP
 Actions A ⊂ E are controllable events
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Events

 With each event e is associated:
 A condition φe identifying the set of states 

in which e is enabled
 A distribution Ge governing the time e must 

remain enabled before it triggers
 A distribution pe(s′|s) determining the 

probability that the next state is s′ if e 
triggers in state s
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Events: Example

 Network with two machines
 Crash time: Exp(1)
 Reboot time: U(0,1)

Gc1 = Exp(1)
Gc2 = Exp(1)

Asynchronous events ⇒ beyond semi-Markov

Gc1 = Exp(1)
Gr2 = U(0,1)

Gr2 = U(0,0.5)
t = 0 t = 0.6 t = 1.1

crash m2m1 up
m2 up

m1 up
m2 down

m1 down
m2 down

crash m1
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Policies

 Actions as controllable events
 We can choose to disable an action even if 

its enabling condition is satisfied
 A policy determines the set of actions to 

keep enabled at any given time during 
execution



 11

Rewards and Optimality
 Lump sum reward k(s,e,s′) associated 

with transition from s to s′ caused by e
 Continuous reward rate r(s,A) 

associated with A being enabled in s
 Infinite-horizon discounted reward

 Unit reward earned at time t counts as e 
–αt

 Optimal choice may depend on entire 
execution history
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GSMDP Solution Method

Continuous-time MDPGSMDP Discrete-time MDPDiscrete-time MDP

Phase-type distributions
(approximation)

Uniformization
[Jensen 1953]

GSMDP Continuous-time MDP

MDP policyGSMDP policy Simulate
phase transitions
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Continuous Phase-Type 
Distributions [Neuts 1981]

 Time to absorption in a continuous-time 
Markov chain with n transient states

0
λ

Exponential

10
pλ1

(1 – p)λ1

λ2

Two-phase Coxian

n – 1 10 …pλ

(1 – p)λ

λ λ λ

n-phase generalized Erlang
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Approximating GSMDP with 
Continuous-time MDP

 Approximate each distribution Ge with a 
continuous phase-type distribution
 Phases become part of state description
 Phases represent discretization into 

random-length intervals of the time events 
have been enabled
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Policy Execution

 The policy we obtain is a mapping from 
modified state space to actions

 To execute a policy we need to simulate 
phase transitions

 Times when action choice may change:
 Triggering of actual event or action
 Simulated phase transition
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Method of Moments

 Approximate general distribution G with 
phase-type distribution PH by matching 
the first k moments
 Mean (first moment): µ1

 Variance: σ 
2 = µ2 – µ1

2 
 The ith moment: µi = E[X 

i]
 Coefficient of variation: cv = σ /µ1
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Matching One Moment

 Exponential distribution: λ = 1/µ1
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Matching Two Moments

cv 
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Exponential Distribution
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Matching Two Moments

cv 
2

0 1

1

1
µ

λ =

Exponential Distribution





= 2

1
cv

n

1

1
µ

λ npp +−=

)1)(1(2
44221 2

222

+−
⋅−+−−+⋅−=

cvn
cvnnncvnp

Generalized Erlang Distribution



 20

cv 
2

Matching Two Moments
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Matching Three Moments

 Combination of Erlang and two-phase 
Coxian [Osogami & Harchol-Balter, TOOLS’03]

n – 2n – 30 …λ

(1 – p)λ1

λ λ λ2n – 1 
pλ1
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The Foreman’s Dilemma

 When to enable “Service” action in 
“Working” state?

Working
c = 1

Failed
c = 0

Serviced
c = 0.5

Service
Exp(10)

Return
Exp(1)

Fail
G

Replace
Exp(1/100)
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The Foreman’s Dilemma: 
Optimal Solution

 Find t0 that maximizes v0
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The Foreman’s Dilemma: 
SMDP Solution

 Same formulas, but restricted choice:
 Action is immediately enabled (t0 = 0)
 Action is never enabled (t0 = ∞)
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3 moments
2 moments
SMDP
1 moment

The Foreman’s Dilemma: 
Performance

Failure-time distribution: U(5,x)
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3 moments
2 moments
SMDP
1 moment

The Foreman’s Dilemma: 
Performance

Failure-time distribution: W(1.6x,4.5)
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System Administration

 Network of n machines
 Reward rate c(s) = k in states where k 

machines are up
 One crash event and one reboot action 

per machine
 At most one action enabled at any time 

(single agent)
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System Administration: 
Performance

3 moments
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1 moment
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System Administration: 
Performance
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Summary

 Generalized semi-Markov (decision) 
processes allow asynchronous events

 Phase-type distributions can be used to 
approximate a GSMDP with an MDP
 Allows us to approximately solve GSMDPs 

and SMDPs using existing MDP techniques
 Phase does matter!
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Future Work

 Discrete phase-type distributions
 Handles deterministic distributions
 Avoids uniformization step

 Other optimization criteria
 Finite horizon, etc.

 Computational complexity of optimal 
GSMDP planning
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Tempastic-DTP

 A tool for GSMDP planning:
http://www.cs.cmu.edu/~lorens/tempastic-dtp.html

http://www.cs.cmu.edu/~lorens/tempastic-dtp.html
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Matching Moments: Example 1

 Weibull distribution: W(1,1/2)
 µ1 = 2, cv2 = 5

one moment
two moments

W(1,1/2)

1 2 3 4 5 6 7 8

0.5

1.0

t

F(t)
10

1/10

9/10

1/10
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Matching Moments: Example 2

 Uniform distribution: U(0,1)
 µ1 = 1/2, cv2 = 1/3

0.5

1.0
F(t)

U(0,1)

t

one moment
two moments

1 2

10
6 6

2
6


