Error Control for Probabilistic Model Checking

Håkan L. S. Younes Carnegie Mellon University

Contributions

- Framework for expressing correctness guarantees of model-checking algorithms
 - Enables comparison of different algorithms
 - Improves understanding of sampling-based algorithms
- New sampling-based algorithm for probabilistic model checking
 - Better error control through undecided results

Probabilistic Model Checking

- Given a model *M*, a state *s*, and a property Φ, does Φ hold in *s* for *M*?
 - Model: stochastic discrete event system
 - Property: probabilistic temporal logic formula

"The probability is at least 0.1 that the queue becomes full within 5 minutes"

Temporal Stochastic Logic (CSL)

- Standard logic operators: $\neg \Phi, \Phi \land \Psi, \dots$
- Probabilistic operator: $\mathcal{P}_{\geq \theta}[\varphi]$
 - Holds in state s iff probability is at least of for paths satisfying of and starting in s
- Until: $\Phi \mathcal{U}^{\leq T} \Psi$
 - Holds over path σ iff Ψ becomes true along σ within time *T*, and Φ is true until then

Property Example

"The probability is at least 0.1 that the queue becomes full within 5 minutes"

• $\mathcal{P}_{\geq 0.1}[\top \mathcal{U}^{\leq 5} full]$

Younes

Possible Results of Model Checking

■ Given a state s and a formula Φ, a modelchecking algorithm A can:

 $(s \vdash_{\tau} \Phi)$

 $(s \vdash \Phi)$

 $(s \vdash_{\tau} \Phi)$

- Accept Φ as true in s
- Reject Φ as false in s
- Return an undecided result
- An error occurs if:
 - \mathcal{A} rejects Φ when Φ is true (false negative)
 - \mathcal{A} accepts Φ when Φ is false (false positive)

Ideal Error Control

- Bound on false negatives: α
 - $\Pr[s \vdash \Phi | s \models \Phi] \le \alpha$
- Bound on false positives:
 - $\Pr[s \vdash_{\tau} \Phi | s \nvDash \Phi] \leq \beta$
- Bound on undecided results: γ
 - $\Pr[s \vdash_{I} \Phi] \leq \gamma$

Unrealistic Expectations

Temporal Stochastic Logic with Indifference Regions (CSL_{δ})

- Indifference region of width 2δ centered around probability thresholds
- Probabilistic operator: $\mathcal{P}_{\geq \theta}[\varphi]$
 - Holds in state *s* if probability is at least $\theta + \delta$ for paths satisfying φ and starting in *s*
 - Does not hold if probability is at most $\theta \delta$
 - "Too close to call" if probability is within δ distance of θ

Error Control for Current Solution Methods

- Bound on false negatives: α
 - $\Pr[s \vdash_{\perp} \Phi | s \vDash_{\tau}^{\delta} \Phi] \leq \alpha$
- Bound on false positives: β
 - $\Pr[s \vdash_{\tau} \Phi | s \vDash^{\delta} \Phi] \leq \beta$
- No undecided results: $\gamma = 0$
 - $\Pr[s \vdash_{I} \Phi] = 0$

Probabilistic Model Checking with Indifference Regions

Hypothesis Testing Younes & Simmons (CAV'02)

- Single sampling plan: $\langle n, c \rangle$
 - Generate n sample execution paths
 - Accept $\mathcal{P}_{\geq \theta}[\varphi]$ iff more than *c* paths satisfy φ
 - Probability of accepting $\mathcal{P}_{\geq \theta}[\varphi]$ as true: $1 - F(c;n,p) = 1 - \sum_{i=0}^{c} {n \choose i} p^{i} (1-p)^{n-i}$
- Sequential acceptance sampling

Statistical Estimation Hérault et al. (VMCAl'04)

- Estimate *p* using sample of size *n*: $\widetilde{p} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- Choosing n:

$$n = \left[\frac{1}{2\delta^2} \log \frac{2}{\alpha}\right] \implies \Pr[|\widetilde{p} - p| < \delta] \ge 1 - \alpha$$

• Acceptance condition for $\mathcal{P}_{\geq \theta}[\varphi]$: $\tilde{p} \geq \theta$

Same as single sampling plan $\langle n, \lfloor n\theta + 1 \rfloor \rangle$!

Statistical Estimation vs. Hypothesis Testing

θ	α	β	<i>n</i> _{est}	<i>n</i> _{opt}	$n_{\rm est}/n_{\rm opt}$	
0.5	10^{-2}	10^{-2}	26,492	13,527	1.96	
0.5	10^{-8}	10^{-2}	95,570	39,379	2.43	
0.5	10^{-8}	10^{-8}	95,570	78,725	1.21	
0.9	10-2	10 ⁻²	26,492	4,861	5.45	
0.9	10^{-8}	10^{-2}	95,570	13,982	6.84	
0.9	10^{-8}	10^{-8}	95,570	28,280	3.38	

Numerical Transient Analysis Baier et al. (CAV'00)

- Estimate p with truncation error ε : $\widetilde{p} \le p \le \widetilde{p} + \varepsilon$
- Acceptance condition for $\mathcal{P}_{\geq \theta}[\varphi]$: $\tilde{p} + \frac{\varepsilon}{2} \geq \theta$ Pr[$s \vdash_{\perp} \Phi \mid s \models_{\perp}^{\delta} \Phi$] = 0 $\delta = \frac{\varepsilon}{2}$ Pr[$s \vdash_{\perp} \Phi \mid s \models_{\perp}^{\delta} \Phi$] = 0

Alternative Error Control

- Bound on false negatives: α
 - $\Pr[s \vdash_{\perp} \Phi | s \models \Phi] \le \alpha$
- Bound on false positives:
 - $\Pr[s \vdash_{\tau} \Phi | s \nvDash \Phi] \leq \beta$
- Bound on undecided results: γ ■ $\Pr[s \vdash_{I} \Phi | (s \models_{T}^{\delta} \Phi) \lor (s \models_{L}^{\delta} \Phi)] \leq \gamma$

Probabilistic Model Checking with Undecided Results

Statistical Solution Method

- Simultaneous acceptance sampling plans
 - $H_{0}: p \geq \theta$ against $H_{1}: p \leq \theta \delta$
 - $H_0^{T}: p \ge \theta + \delta$ against $H_1^{T}: p \le \theta$
- Combining the results
 - Accept $\mathcal{P}_{\geq \theta}[\boldsymbol{\varphi}]$ if H_0^{\top} and H_0^{\perp} are accepted
 - Reject $\mathcal{P}_{\geq \theta}[\varphi]$ if H_1 and H_1 are accepted
 - Undecided result otherwise

Empirical Evaluation (Symmetric Polling System)

Empirical Evaluation (Symmetric Polling System)

 $\alpha = \beta = \gamma = 10^{-2}$

result	14.10	14.15	14.20	14.25	14.30	14.35	14.40
accept	0	3	9	50	88	97	100
reject	100	97	91	50	12	3	0
accept	0	0	0	0	32	99	100
reject	100	99	42	1	0	0	0
undecided	0	1	58	99	68	1	0

Summary

- Statistical estimation is never more efficient than hypothesis testing
- Statistical methods are randomized algorithms for CSL_δ model checking
- Numerical methods are exact algorithms for CSL_δ model checking
- New statistical solution method with finer error control (γ parameter)

Younes