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Introduction

Model-independent approach to probabilistic model checking
 Relies on simulation and statistical sampling
 Wrong answer possible, but can be bounded (probabilistically) 
 Low memory requirements (can handle large/infinite models)
 Trivially parallelizable (distributed sampling gives linear speedup)

Topics covered in this talk:
 Error control
 Hypothesis testing vs. estimation
 Dealing with unbounded properties/infinite trajectories
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Probabilistic model checking

Given a model , a state s, and a property Φ, does Φ hold in s for  ?
 Model: stochastic discrete-event system
 Property: probabilistic temporal logic formula

Example: tandem queuing network

“The probability is at least 0.1 that both queues
become full within 5 minutes”

q1 q2

arrive route depart
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Probabilistic temporal logic (PCTL, CSL)

Standard logic operators: ¬ Φ, Φ ∧ Ψ, …

Probabilistic operator: ≥θ [ϕ ]
 Holds in state s iff probability is at least θ for paths satisfying ϕ and starting 

in s

Bounded until: Φ  ≤T Ψ
 Holds over path σ iff Ψ becomes true along σ within time T, and Φ is true 

until then

Unbounded until: Φ Ψ
 Holds over path σ iff Ψ becomes true eventually along σ, and Φ is true until 

then
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Property examples

“The probability is at least 0.1 that both queues become full within 5 
minutes”
 ≥0.1[  ≤5 full1 ∧ full2

 ]

“The probability is at most 0.05 that the second queue becomes full 
before the first queue”
 ≤0.05[¬ full1   full2

 ]
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The problem (in detail)

Before we propose a solution, we need to fully define the problem
 Possible outcomes of model-checking algorithm
 Ideal vs. realistic error control
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Possible outcomes of model-checking algorithm

Given a state s and a formula Φ, a model-checking algorithm  can:
 Accept Φ as true in s (s  Φ)

 Reject Φ as false in s (s  Φ)

 Return an undecided result (s I Φ)

An error occurs if:
  rejects Φ when Φ is true (false negative)
  accepts Φ when Φ is false (false positive)

Note: an undecided result is not an error, but still not desirable
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Ideal error control

Bound the probability of false negatives/positives and undecided 
results under all circumstances
 Bound on false negatives: α Pr[s  Φ | s  Φ] ≤ α

 Bound on false positives: β Pr[s  Φ | s  Φ] ≤ β

 Bound on undecided results: γ Pr[s I Φ] ≤ γ

If α, β, and γ are all low, then model-checking algorithm  produces a 
correct result with high probability
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Unrealistic expectations

Ideal error control for verifying probabilistic formula ≥θ [ϕ ] in state s

Actual probability of ϕ holding

s  ≥θ [ϕ ]s  ≥θ [ϕ ]
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Relaxing the problem

Indifference region of width 2δ centered around probability thresholds

Probabilistic operator: ≥θ [ϕ ]

 Holds in state s if probability is at least θ + δ for paths satisfying ϕ and 
starting in s

 Does not hold if probability is at most θ − δ for paths satisfying ϕ and starting 
in s

 “Too close to call” if probability is within δ distance of θ (indifference)

Essentially three-valued logic, but we care only about true and false
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Error control for relaxed problem

Option 1: bound the probability of false positives/negatives outside of 
the indifference region; no undecided results
 Bound on false negatives: α Pr[s  Φ | s  Φ] ≤ α

 Bound on false positives: β Pr[s  Φ | s  Φ] ≤ β

 No undecided results: γ  = 0 Pr[s I Φ] = 0

Option 2: bound the probability of undecided results outside of the 
indifference region; low error probability under all circumstances
 Bound on false negatives: α Pr[s  Φ | s  Φ] ≤ α

 Bound on false positives: β Pr[s  Φ | s  Φ] ≤ β

 Bound on undecided results: γ Pr[s I Φ | (s  Φ) ∨ (s  Φ)] ≤ γ

δ

δ

δ δ
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Realistic error control—no undecided results

Error control for verifying probabilistic formula ≥θ [ϕ ] in state s

Actual probability of ϕ holding

s  ≥θ [ϕ ]s  ≥θ [ϕ ]
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Realistic error control—with undecided results

Error control for verifying probabilistic formula ≥θ [ϕ ] in state s

Actual probability of ϕ holding

s  ≥θ [ϕ ]s  ≥θ [ϕ ]
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The solution

 Statistical sampling (hypothesis testing vs. estimation)
 Undecided results
 Avoiding infinite sample trajectories in simulation for unbounded until
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Verifying probabilistic properties—no undecided results
Younes & Simmons (CAV’02, Information and Computation’06)

Use acceptance sampling to verify ≥θ [ϕ ] in state s

 Test hypothesis H0: p ≥ θ + δ against hypothesis H1: p ≤ θ – δ 

 Observation: verify ϕ over sample trajectories generated using simulation
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Acceptance sampling with fixed sample size

Single sampling plan: n, c
 Generate n sample trajectories

 Accept H0: p ≥ θ + δ iff more than c paths satisfy ϕ

 Pick n and c such that:
 Probability of accepting H1 when H0 holds is at most α

 Probability of accepting H0 when H1 holds is at most β

Sequential single sampling plan:
 Accept H0 after m < n observations if more than c observations are positive

 Accept H1 after m < n observations if at most k observations are positive and 
k + (n – m) ≤ c
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Graphical representation of sequential single sampling plan
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Sequential probability ratio test (SPRT)
Wald (Annals of Mathematical Statistics’45)

More efficient than sequential single sampling plan
 After m observations, k positive, compute ratio:

 Accept H0: p ≥ θ + δ if ƒ ≤ β ∕ (1 – α)

 Accept H1: p ≤ θ – δ if ƒ ≥ (1 – β) ∕ α 

No fixed upper bound on sample size, but much smaller on average
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Graphical representation of SPRT
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Statistical estimation
Hérault et al. (VMCAI’04)

Estimate p with confidence interval of width 2δ
 Accept H0: p ≥ θ + δ iff center of confidence interval is at least θ

 Choosing sample size:

Same as single sampling plan n, nθ + 1; never more efficient!

[ ] αδ
αδ

−≥<−⇒



= 1~Pr2log
2

1
2 ppn

3.3828,28095,57010−810−80.9
6.8413,98295,57010−210−80.9
5.454,86126,49210−210−20.9
1.2178,72595,57010−810−80.5
2.4339,37995,57010−210−80.5
1.9613,52726,49210−210−20.5

nest ∕ noptnoptnestβαθ
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Acceptance sampling with undecided results
Younes (VMCAI’06)

Simultaneous acceptance sampling plans
 H0: p ≥ θ against H1: p ≤ θ – δ

 H0: p ≥ θ + δ against H1: p ≤ θ

Combining the results
 Accept ≥θ [ϕ ] if H0 and H0 are accepted

 Reject ≥θ [ϕ ] if H1 and H1 are accepted

 Undecided result otherwise
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Graphical representation of SPRT with undecided results
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Unbounded until—avoiding infinite sample trajectories
Younes (unpublished manuscript)

Premature termination with probability pt after each state transition
 Ensures finite sample trajectories

 Change value of positive sample trajectory ω from 1 to (1 – pt)–|ω|

 Inspired by Monte Carlo method for matrix inversion by Forsythe & Leibler 
(1950)

Observations no longer 0 or 1: previous methods do not apply
 Use sequential estimation by Chow & Robbins (1965)

 Lower pt means fewer samples, by longer trajectories

Note: Sen et al. (CAV’05) tried to handle unbounded until with 
termination probability, but flawed because observations are still 0 or 1
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Empirical evaluation
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Numerical vs. statistical (tandem queuing network)
Younes et al. (TACAS’04)
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Numerical vs. statistical (symmetric polling system)
Younes et al. (TACAS’04)
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Undecided results (symmetric polling system)

0168995810undecided

00014299100reject

10099320000accept

0312509197100reject

100978850930accept

14.4014.3514.3014.2514.2014.1514.10result

α = β = γ = 10–2
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Thank you!

Questions?


