Statistical probabilistic model checking

Håkan L. S. Younes Carnegie Mellon University (now at Google Inc.)

Introduction

Model-independent approach to probabilistic model checking

- Relies on simulation and statistical sampling
- Wrong answer possible, but can be bounded (probabilistically)
- Low memory requirements (can handle large/infinite models)
- Trivially parallelizable (distributed sampling gives linear speedup)

Topics covered in this talk:

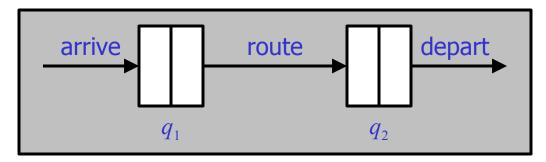
- Error control
- Hypothesis testing vs. estimation
- Dealing with unbounded properties/infinite trajectories

Probabilistic model checking

Given a model \mathcal{M} , a state *s*, and a property Φ , does Φ hold in *s* for \mathcal{M} ?

- Model: stochastic discrete-event system
- Property: probabilistic temporal logic formula

Example: tandem queuing network



"The probability is at least 0.1 that both queues become full within 5 minutes" Probabilistic temporal logic (PCTL, CSL)

Standard logic operators: $\neg \Phi, \Phi \land \Psi, \dots$

Probabilistic operator: $\mathcal{P}_{\geq \theta}[\phi]$

Holds in state s iff probability is at least

 for paths satisfying

 and starting
 in s

Bounded until: $\Phi \mathcal{U}^{\leq T} \Psi$

• Holds over path σ iff Ψ becomes true along σ within time *T*, and Φ is true until then

Unbounded until: $\Phi \mathcal{U} \Psi$

 Holds over path σ iff Ψ becomes true eventually along σ, and Φ is true until then

Property examples

"The probability is at least 0.1 that both queues become full within 5 minutes"

• $\mathcal{P}_{\geq 0.1}[\top \mathcal{U}^{\leq 5} full_1 \wedge full_2]$

"The probability is at most 0.05 that the second queue becomes full before the first queue"

• $\mathcal{P}_{\leq 0.05}[\neg full_1 \mathcal{U} full_2]$

The problem (in detail)

Before we propose a solution, we need to fully define the problem

- Possible outcomes of model-checking algorithm
- Ideal vs. realistic error control

Possible outcomes of model-checking algorithm

Given a state *s* and a formula Φ , a model-checking algorithm A can:

- Accept Φ as true in s $(s \vdash_{\tau} \Phi)$
- Reject Φ as false in s $(s \vdash_{\perp} \Phi)$
- Return an undecided result $(s \vdash_{I} \Phi)$

An error occurs if:

- \mathcal{A} rejects Φ when Φ is true (false negative)
- \mathcal{A} accepts Φ when Φ is false (false positive)

Note: an undecided result is not an error, but still not desirable

Ideal error control

Bound the probability of false negatives/positives and undecided results under all circumstances

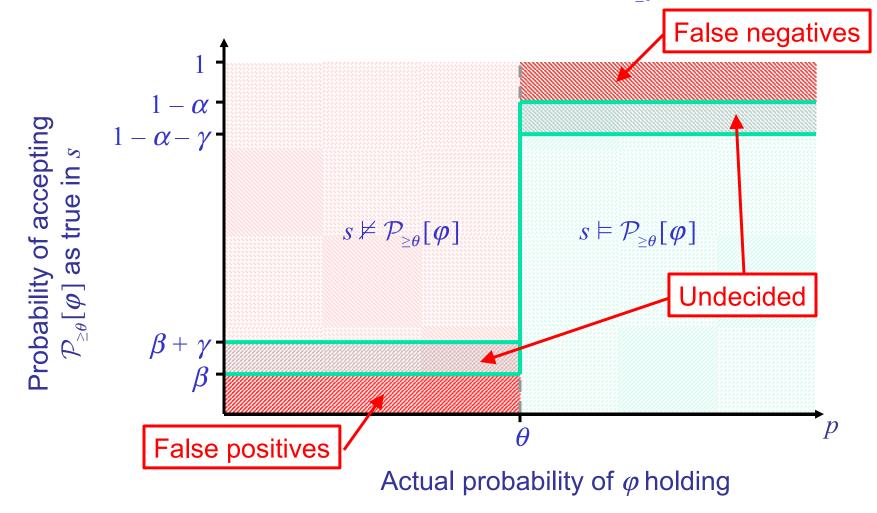
- Bound on false negatives: α $\Pr[s \vdash_{\perp} \Phi | s \models \Phi] \le \alpha$
- Bound on false positives: β $\Pr[s \vdash_{\tau} \Phi | s \nvDash \Phi] \le \beta$
- Bound on undecided results: γ Pr[s

 $\Pr[s \vdash_{I} \Phi] \leq \gamma$

If α , β , and γ are all low, then model-checking algorithm \mathcal{A} produces a correct result with high probability

Unrealistic expectations

Ideal error control for verifying probabilistic formula $\mathcal{P}_{>\theta}[\varphi]$ in state s



Indifference region of width 2δ centered around probability thresholds

Probabilistic operator: $\mathcal{P}_{\geq \theta}[\varphi]$

- Holds in state s if probability is at least θ + δ for paths satisfying φ and starting in s
- Does not hold if probability is at most θ δ for paths satisfying φ and starting in s
- "Too close to call" if probability is within δ distance of θ (indifference)

Essentially three-valued logic, but we care only about true and false

Error control for relaxed problem

Option 1: bound the probability of false positives/negatives outside of the indifference region; no undecided results

- Bound on false negatives: α $\Pr[s \vdash_{\perp} \Phi | s \models_{\delta} \Phi] \leq \alpha$
- Bound on false positives: β $\Pr[s \vdash_{T} \Phi | s \models_{\perp}^{\delta} \Phi] \le \beta$
- No undecided results: $\gamma = 0$

 $\Pr[s \vdash_{\tau} \Phi] = \mathbf{0}$

Option 2: bound the probability of undecided results outside of the indifference region; low error probability under all circumstances

- Bound on false negatives: α
- Bound on false positives: β
- Bound on undecided results: γ

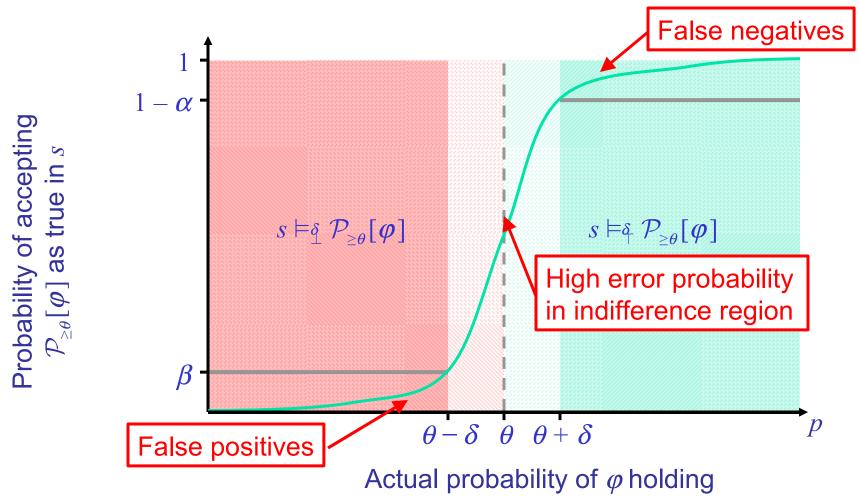
 $\Pr[s \vdash_{\perp} \Phi \mid s \vDash \Phi] \le \alpha$

$$\Pr[s \vdash_{T} \Phi \mid s \nvDash \Phi] \leq \beta$$

$$\Pr[s \vdash_{I} \Phi \mid (s \vDash_{T} \Phi) \lor (s \vDash_{L} \Phi)] \leq \gamma$$

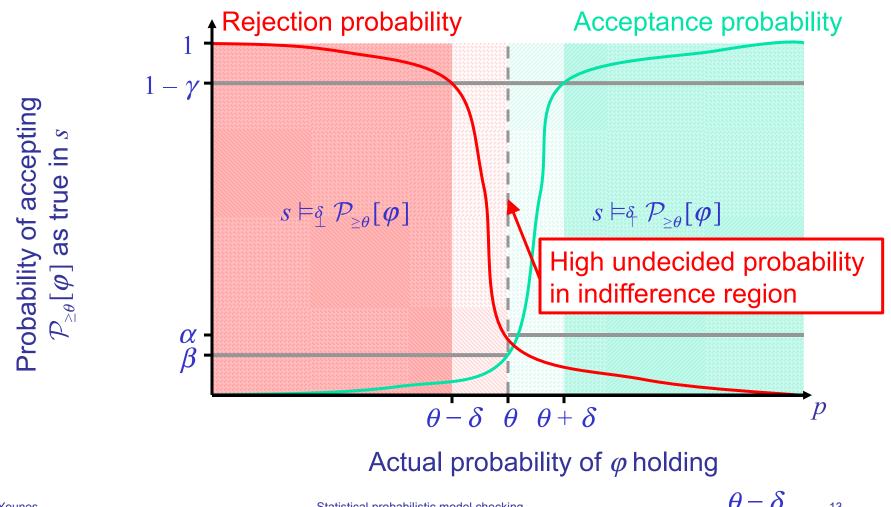
Realistic error control—no undecided results

Error control for verifying probabilistic formula $\mathcal{P}_{\geq \theta}[\varphi]$ in state *s*



Realistic error control—with undecided results

Error control for verifying probabilistic formula $\mathcal{P}_{>_{\theta}}[\varphi]$ in state s



13

The solution

- Statistical sampling (hypothesis testing vs. estimation)
- Undecided results
- Avoiding infinite sample trajectories in simulation for unbounded until

Verifying probabilistic properties—no undecided results Younes & Simmons (CAV'02, Information and Computation'06)

Use acceptance sampling to verify $\mathcal{P}_{>\theta}[\varphi]$ in state *s*

- Test hypothesis $H_0: p \ge \theta + \delta$ against hypothesis $H_1: p \le \theta \delta$
- Observation: verify ϕ over sample trajectories generated using simulation

Acceptance sampling with fixed sample size

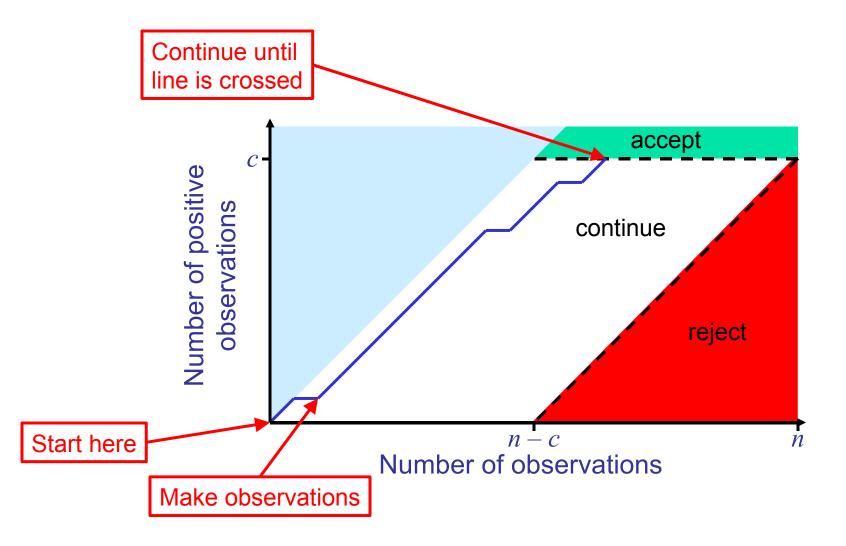
Single sampling plan: $\langle n, c \rangle$

- Generate *n* sample trajectories
- Accept $H_0: p \ge \theta + \delta$ iff more than c paths satisfy φ
- Pick n and c such that:
 - Probability of accepting H_1 when H_0 holds is at most α
 - Probability of accepting H_0 when H_1 holds is at most β

Sequential single sampling plan:

- Accept H_0 after m < n observations if more than *c* observations are positive
- Accept H₁ after m < n observations if at most k observations are positive and k+(n-m) ≤ c

Graphical representation of sequential single sampling plan



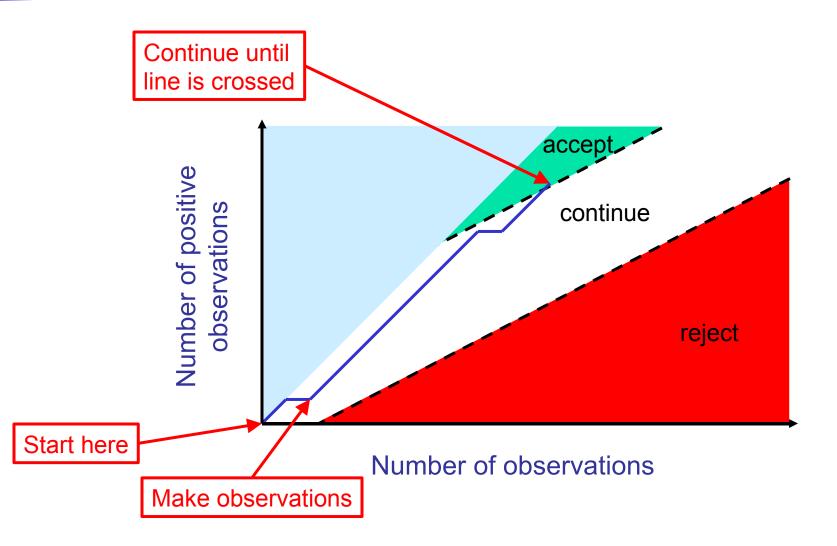
Sequential probability ratio test (SPRT) Wald (Annals of Mathematical Statistics'45)

More efficient than sequential single sampling plan

- After *m* observations, *k* positive, compute ratio: $f = \frac{(\theta \delta)^{k} (1 \theta + \delta)^{m-k}}{(\theta + \delta)^{k} (1 \theta \delta)^{m-k}}$
- Accept $H_0: p \ge \theta + \delta$ if $f \le \beta/(1 \alpha)$
- Accept $H_1: p \le \theta \delta$ if $f \ge (1 \beta) / \alpha$

No fixed upper bound on sample size, but much smaller on average

Graphical representation of SPRT



Estimate p with confidence interval of width 2δ

- Accept $H_0: p \ge \theta + \delta$ iff center of confidence interval is at least θ
- Choosing sample size: $n = \left[\frac{1}{2\delta^2} \log \frac{2}{\alpha}\right] \implies \Pr[|\widetilde{p} p| < \delta] \ge 1 \alpha$

Same as single sampling plan $\langle n, \lfloor n\theta + 1 \rfloor \rangle$; never more efficient!

θ	α	β	n _{est} n _{opt}		$n_{\rm est}/n_{\rm opt}$	
0.5	10-2	10-2	26,492	13,527	1.96	
0.5	10-8	10-2	95,570	39,379	2.43	
0.5	10-8	10-8	95,570	78,725	1.21	
0.9	10-2	10-2	26,492	4,861	5.45	
0.9	10-8	10-2	95,570	13,982	6.84	
0.9	10-8	10-8	95,570	28,280	3.38	

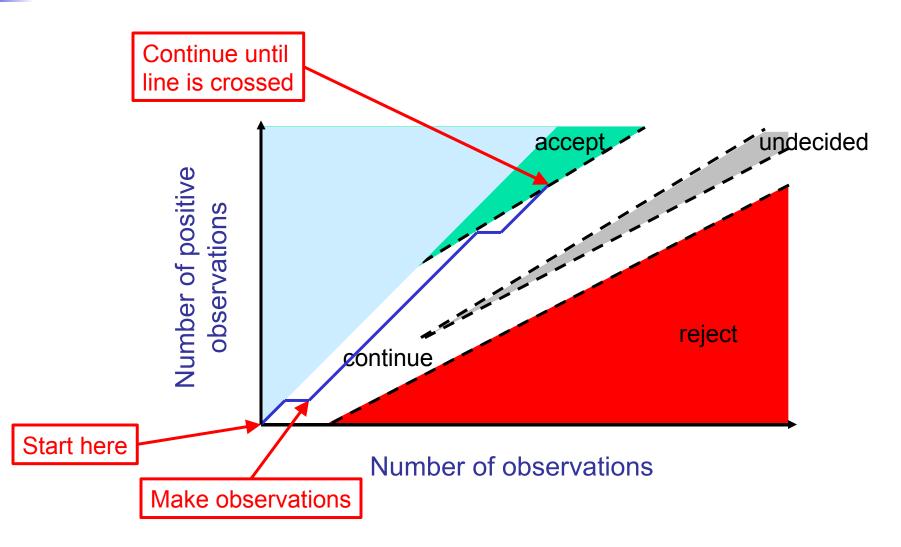
Simultaneous acceptance sampling plans

- $H_{0}^{\perp} p \ge \theta$ against $H_{1}^{\perp} p \le \theta \delta$
- $H_0^{\mathsf{T}}: p \ge \theta + \delta \text{ against } H_1^{\mathsf{T}}: p \le \theta$

Combining the results

- Accept $\mathcal{P}_{\geq \theta}[\boldsymbol{\varphi}]$ if H_0^{\top} and H_0^{\perp} are accepted
- Reject $\mathcal{P}_{\geq \theta}[\varphi]$ if H_1^{\top} and H_1^{\perp} are accepted
- Undecided result otherwise

Graphical representation of SPRT with undecided results



Premature termination with probability p_t after each state transition

- Ensures finite sample trajectories
- Change value of positive sample trajectory ω from 1 to $(1 p_t)^{-|\omega|}$
- Inspired by Monte Carlo method for matrix inversion by Forsythe & Leibler (1950)

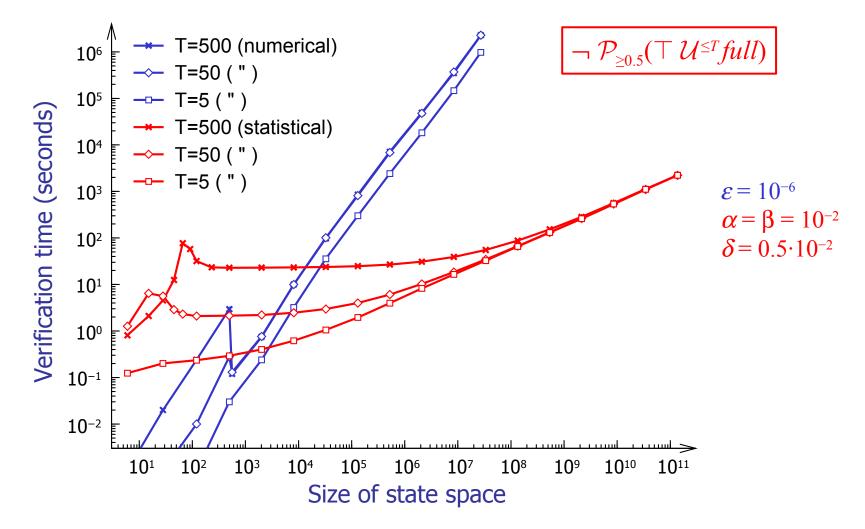
Observations no longer 0 or 1: previous methods do not apply

- Use sequential estimation by Chow & Robbins (1965)
- Lower p_t means fewer samples, by longer trajectories

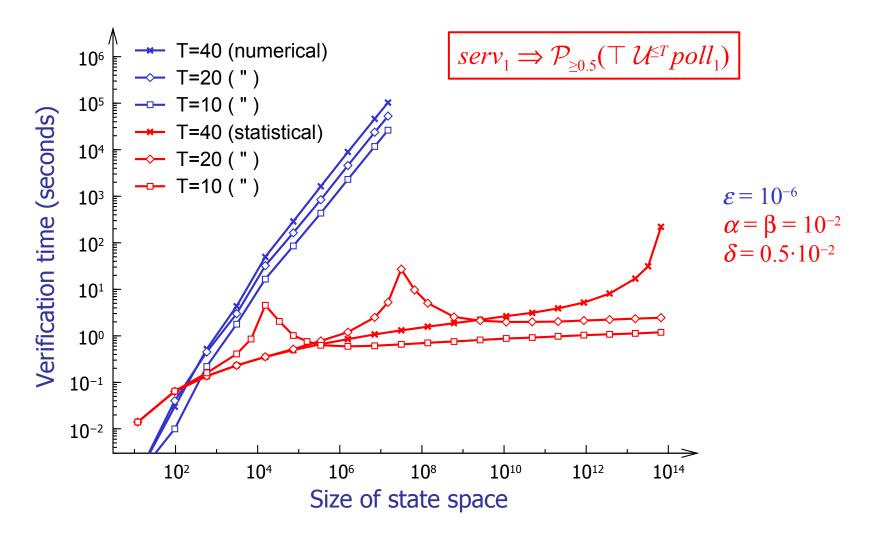
Note: Sen et al. (CAV'05) tried to handle unbounded until with termination probability, but flawed because observations are still 0 or 1

Empirical evaluation

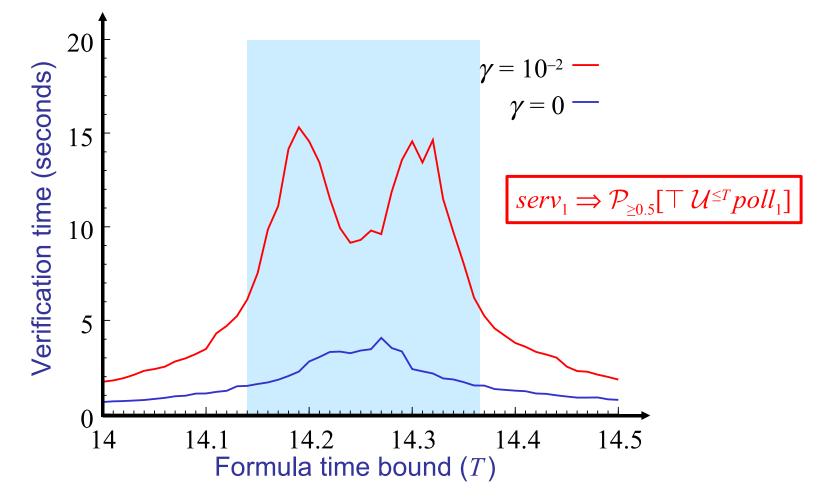
Numerical vs. statistical (tandem queuing network) Younes et al. (TACAS'04)



Numerical vs. statistical (symmetric polling system) Younes et al. (TACAS'04)



Undecided results (symmetric polling system) Younes (VMCAI'06)



Undecided results (symmetric polling system)

$$\alpha = \beta = \gamma = 10^{-2}$$

result	14.10	14.15	14.20	14.25	14.30	14.35	14.40
accept	0	3	9	50	88	97	100
reject	100	97	91	50	12	3	0
accept	0	0	0	0	32	99	100
reject	100	99	42	1	0	0	0
undecided	0	1	58	99	68	1	0

