Statistical Probabilistic Model Checking

Håkan L. S. Younes Carnegie Mellon University

Introduction

- Model checking for stochastic processes
 - Stochastic discrete event systems
 - Probabilistic time-bounded properties
- Model independent approach
 - Discrete event simulation
 - Statistical hypothesis testing

With both queues empty, is the probability less than 0.5 that both queues become full within 5 seconds?

Probabilistic Model Checking

- Given a model M, a state s, and a property φ, does φ hold in s for M?
 - Model: stochastic discrete event system
 - Property: probabilistic temporal logic formula

Continuous Stochastic Logic (CSL)

- State formulas
 - Truth value is determined in a single state
- Path formulas
 - Truth value is determined over a path

Discrete-time analogue: PCTL

State Formulas

- Standard logic operators: $\neg \varphi, \varphi_1 \land \varphi_2, \ldots$
- Probabilistic operator: $P_{\geq \theta}(\rho)$
 - Holds in state s iff probability is at least θ that ρ holds over paths starting in s
 - $\bullet \mathsf{P}_{<\theta}(\rho) \Leftrightarrow \neg \mathsf{P}_{\geq 1-\theta}(\rho)$

Path Formulas

- Until: $\boldsymbol{\varphi}_1 \sqcup^{\leq T} \boldsymbol{\varphi}_2$
 - Holds over path σ iff φ_2 becomes true in some state along σ before time T, and φ_1 is true in all prior states

CSL Example

- With both queues empty, is the probability less than 0.5 that both queues become full within 5 seconds?
 - State: $q_1 = 0 \land q_2 = 0$
 - Property: $P_{<0.5}$ (true $U^{\le 5}q_1 = 2 \land q_2 = 2$)

Model Checking Probabilistic Time-Bounded Properties

- Numerical Methods
 - Provide highly accurate results
 - Expensive for systems with many states
- Statistical Methods
 - Low memory requirements
 - Adapt to difficulty of problem (sequential)
 - Expensive if high accuracy is required

Statistical Solution Method [Younes & Simmons 2002]

- Use discrete event simulation to generate sample paths
- Use acceptance sampling to verify probabilistic properties
 - Hypothesis: $P_{\geq \theta}(\rho)$
 - Observation: verify p over a sample path

Not estimation!

Error Bounds

- Probability of false negative: $\leq \alpha$
 - We say that φ is false when it is true
- Probability of false positive: $\leq \beta$
 - We say that φ is true when it is false

Performance of Test

Actual probability of ρ holding

θ

Ideal Performance of Test

Realistic Performance of Test

Sequential Acceptance Sampling [Wald 1945]

Graphical Representation of Sequential Test

Number of observations

Graphical Representation of Sequential Test

• We can find an acceptance line and a rejection line given θ , δ , α , and β

Number of observations

Special Case

• $p_0 = 1$ and $p_1 = 1 - 2\delta$

- Reject at first negative observation
- Accept at stage *m* if $p_1^m \leq \beta$

- Sample size at most $d\log \beta / \log p_1 B$

• "Five nines": $p_1 = 1 - 10^{-5}$						
	β	Maximum sample size				
	10-2	460,515				
	10-4	921,030				
	10-8	1,842,059				

Case Study: Tandem Queuing Network

- M/Cox₂/1 queue sequentially composed with M/M/1 queue
- Each queue has capacity n
- State space of size O(n²)

Tandem Queuing Network (results) [Younes et al. 2004]

Tandem Queuing Network (results) [Younes et al. 2004]

Case Study: Symmetric Polling System

- Single server, n polling stations
- Stations are attended in cyclic order
- Each station can hold one message
- State space of size $O(n \cdot 2^n)$

Symmetric Polling System (results) [Younes et al. 2004]

Symmetric Polling System (results) [Younes et al. 2004]

Tandem Queuing Network: Distributed Sampling

- Use multiple machines to generate samples
 - m₁: Pentium IV 3GHz
 - m₂: Pentium III 733MHz
 - m₃: Pentium III 500MHz

	% samples			% sa	mple	m ₁ only		
n	$m_{\scriptscriptstyle 1}$	m ₂	m ₃	time	$m_{_1}$	m ₂	time	time
63	70	20	10	0.46	71	29	0.50	0.58
2047	60	26	14	1.28	70	30	1.46	1.93
65535	65	21	14	26.29	67	33	33.89	44.85

Summary

- Acceptance sampling can be used to verify probabilistic properties of systems
- Sequential acceptance sampling adapts to the difficulty of the problem
- Statistical methods are easy to parallelize

Other Research

- Failure trace analysis
 - "failure scenario" [Younes & Simmons 2004a]
- Planning/Controller synthesis
 - CSL goals [Younes & Simmons 2004a]
 - Rewards (GSMDPs) [Younes & Simmons 2004b]

Tools

- Ymer
 - Statistical probabilistic model checking
- Tempastic-DTP
 - Decision theoretic planning with asynchronous events

References

- Wald, A. 1945. Sequential tests of statistical hypotheses. *Ann. Math. Statist.* 16: 117-186.
- Younes, H. L. S., M. Kwiatkowska, G. Norman, and D. Parker. 2004. Numerical vs. statistical probabilistic model checking: An empirical study. In *Proc. TACAS-2004*.
- Younes, H. L. S., R. G. Simmons. 2002. Probabilistic verification of discrete event systems using acceptance sampling. In *Proc. CAV-2002*.
- Younes, H. L. S., R. G. Simmons. 2004a. Policy generation for continuous-time stochastic domains with concurrency. In *Proc. ICAPS-2004*.
- Younes, H. L. S., R. G. Simmons. 2004b. Solving generalized semi-Markov decision processes using continuous phase-type distributions. In *Proc. AAAI-2004*.