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Introduction

 Model checking for stochastic processes
 Stochastic discrete event systems
 Probabilistic time-bounded properties

 Model independent approach
 Discrete event simulation
 Statistical hypothesis testing
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Example:
Tandem Queuing Network

q1 q2

arrive route depart

q1 = 0
q2 = 0
q1 = 0
q2 = 0

q1 = 1
q2 = 0

q1 = 1
q2 = 1

q1 = 2
q2 = 0

q1 = 1
q2 = 0

t = 0 t = 1.2 t = 3.7 t = 3.9 t = 5.5

With both queues empty, is the probability less than 0.5
that both queues become full within 5 seconds?

q1 = 1
q2 = 0

q1 = 2
q2 = 0

q1 = 1
q2 = 1

q1 = 1
q2 = 0
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Probabilistic Model Checking

 Given a model M, a state s, and a 
property ϕ, does ϕ hold in s for M?
 Model: stochastic discrete event system
 Property: probabilistic temporal logic 

formula
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Continuous Stochastic Logic 
(CSL)

 State formulas
 Truth value is determined in a single state

 Path formulas
 Truth value is determined over a path

Discrete-time analogue: PCTL
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State Formulas

 Standard logic operators: ¬ϕ, ϕ1 ∧ ϕ2, …
 Probabilistic operator: P≥θ (ρ)

 Holds in state s iff probability is at least θ 
that ρ holds over paths starting in s

 P<θ (ρ) ⇔ ¬P≥1–θ (ρ)



7

Path Formulas

 Until: ϕ1 U ≤T ϕ2

 Holds over path σ iff ϕ2 becomes true in 
some state along σ before time T, and ϕ1 is 
true in all prior states
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CSL Example

 With both queues empty, is the 
probability less than 0.5 that both 
queues become full within 5 seconds?
 State: q1 = 0 ∧ q2 = 0
 Property: P<0.5(true U ≤5 q1 = 2 ∧ q2 = 2) 
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Model Checking Probabilistic 
Time-Bounded Properties

 Numerical Methods
 Provide highly accurate results
 Expensive for systems with many states

 Statistical Methods
 Low memory requirements
 Adapt to difficulty of problem (sequential)
 Expensive if high accuracy is required
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Statistical Solution Method 
[Younes & Simmons 2002]

 Use discrete event simulation to 
generate sample paths

 Use acceptance sampling to verify 
probabilistic properties
 Hypothesis: P≥θ (ρ)
 Observation: verify ρ over a sample path

Not estimation!
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Error Bounds

 Probability of false negative: ≤ α
 We say that ϕ is false when it is true

 Probability of false positive: ≤ β
 We say that ϕ is true when it is false
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Performance of Test

Actual probability of ρ holding
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Ideal Performance of Test

Actual probability of ρ holding
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Realistic Performance of Test

Actual probability of ρ holding
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Sequential
Acceptance Sampling [Wald 1945]

True, false, 
or another 

observation?
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Graphical Representation of 
Sequential Test
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Graphical Representation of 
Sequential Test

 We can find an acceptance line and a 
rejection line given θ, δ, α, and β

acceptance line

rejection line

reject

accept

continue
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Start here

Verify ρ over
sample paths

Continue until
line is crossed
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Special Case

 p0 = 1 and p1 = 1 – 2δ
 Reject at first negative observation
 Accept at stage m if p1

m ≤ β
 Sample size at most dlog β / log p1e

 “Five nines”: p1 = 1 – 10–5 

1,842,05910–8

921,03010–4

460,51510–2

Maximum sample sizeβ
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Case Study:
Tandem Queuing Network

 M/Cox2/1 queue sequentially composed 
with M/M/1 queue

 Each queue has capacity n
 State space of size O(n2)

µ1 µ2

a
……

1 − a

λ κ
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Tandem Queuing Network 
(results) [Younes et al. 2004]
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Tandem Queuing Network 
(results) [Younes et al. 2004]
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Case Study:
Symmetric Polling System

 Single server, n polling stations
 Stations are attended in cyclic order
 Each station can hold one message
 State space of size O(n·2n)

Server

…Polling stations

λ λ λ λ
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Symmetric Polling System 
(results) [Younes et al. 2004]

T=40 (numerical)
T=20 ( " )
T=10 ( " )
T=40 (statistical)
T=20 ( " )
T=10 ( " )

Ve
rif

ic
at

io
n 

tim
e 

(s
ec

on
ds

)

Size of state space

10−2

10−1

100

101

102

103

104

105

106

102 104 106 108 1010 1012 1014

serv1 ⇒ P≥0.5(true U≤T poll1)

ε = 10−6

α = β = 10−2

δ = 0.5·10−2



24

Symmetric Polling System 
(results) [Younes et al. 2004]
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Symmetric Polling System 
(results) [Younes et al. 2004]

numerical (ε=10−6)
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Tandem Queuing Network: 
Distributed Sampling
 Use multiple machines to generate samples

 m1: Pentium IV 3GHz
 m2: Pentium III 733MHz
 m3: Pentium III 500MHz

44.8533.89336726.2914216565535
1.931.4630701.281426602047
0.580.5029710.4610207063

timetimem2m1timem3m2m1n
m1 only% samples% samples
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Summary

 Acceptance sampling can be used to 
verify probabilistic properties of systems

 Sequential acceptance sampling adapts 
to the difficulty of the problem

 Statistical methods are easy to 
parallelize
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Other Research

 Failure trace analysis
 “failure scenario” [Younes & Simmons 2004a]

 Planning/Controller synthesis
 CSL goals [Younes & Simmons 2004a]

 Rewards (GSMDPs) [Younes & Simmons 2004b]
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Tools

 Ymer
 Statistical probabilistic model checking

 Tempastic-DTP
 Decision theoretic planning with 

asynchronous events
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