
Statistical
Probabilistic Model Checking

Håkan L. S. Younes
Carnegie Mellon University



2

Introduction

 Model checking for stochastic processes
 Stochastic discrete event systems
 Probabilistic time-bounded properties

 Model independent approach
 Discrete event simulation
 Statistical hypothesis testing
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Example:
Tandem Queuing Network

q1 q2

arrive route depart

q1 = 0
q2 = 0
q1 = 0
q2 = 0

q1 = 1
q2 = 0

q1 = 1
q2 = 1

q1 = 2
q2 = 0

q1 = 1
q2 = 0

t = 0 t = 1.2 t = 3.7 t = 3.9 t = 5.5

With both queues empty, is the probability less than 0.5
that both queues become full within 5 seconds?

q1 = 1
q2 = 0

q1 = 2
q2 = 0

q1 = 1
q2 = 1

q1 = 1
q2 = 0
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Probabilistic Model Checking

 Given a model M, a state s, and a 
property ϕ, does ϕ hold in s for M?
 Model: stochastic discrete event system
 Property: probabilistic temporal logic 

formula
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Continuous Stochastic Logic 
(CSL)

 State formulas
 Truth value is determined in a single state

 Path formulas
 Truth value is determined over a path

Discrete-time analogue: PCTL
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State Formulas

 Standard logic operators: ¬ϕ, ϕ1 ∧ ϕ2, …
 Probabilistic operator: P≥θ (ρ)

 Holds in state s iff probability is at least θ 
that ρ holds over paths starting in s

 P<θ (ρ) ⇔ ¬P≥1–θ (ρ)
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Path Formulas

 Until: ϕ1 U ≤T ϕ2

 Holds over path σ iff ϕ2 becomes true in 
some state along σ before time T, and ϕ1 is 
true in all prior states
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CSL Example

 With both queues empty, is the 
probability less than 0.5 that both 
queues become full within 5 seconds?
 State: q1 = 0 ∧ q2 = 0
 Property: P<0.5(true U ≤5 q1 = 2 ∧ q2 = 2) 
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Model Checking Probabilistic 
Time-Bounded Properties

 Numerical Methods
 Provide highly accurate results
 Expensive for systems with many states

 Statistical Methods
 Low memory requirements
 Adapt to difficulty of problem (sequential)
 Expensive if high accuracy is required
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Statistical Solution Method 
[Younes & Simmons 2002]

 Use discrete event simulation to 
generate sample paths

 Use acceptance sampling to verify 
probabilistic properties
 Hypothesis: P≥θ (ρ)
 Observation: verify ρ over a sample path

Not estimation!
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Error Bounds

 Probability of false negative: ≤ α
 We say that ϕ is false when it is true

 Probability of false positive: ≤ β
 We say that ϕ is true when it is false
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Performance of Test

Actual probability of ρ holding
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Ideal Performance of Test

Actual probability of ρ holding
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Realistic Performance of Test

Actual probability of ρ holding
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Sequential
Acceptance Sampling [Wald 1945]

True, false, 
or another 

observation?
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Graphical Representation of 
Sequential Test
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Graphical Representation of 
Sequential Test

 We can find an acceptance line and a 
rejection line given θ, δ, α, and β

acceptance line

rejection line

reject

accept

continue

Number of observations
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Start here

Verify ρ over
sample paths

Continue until
line is crossed
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Special Case

 p0 = 1 and p1 = 1 – 2δ
 Reject at first negative observation
 Accept at stage m if p1

m ≤ β
 Sample size at most dlog β / log p1e

 “Five nines”: p1 = 1 – 10–5 

1,842,05910–8

921,03010–4

460,51510–2

Maximum sample sizeβ
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Case Study:
Tandem Queuing Network

 M/Cox2/1 queue sequentially composed 
with M/M/1 queue

 Each queue has capacity n
 State space of size O(n2)

µ1 µ2

a
……

1 − a

λ κ
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Tandem Queuing Network 
(results) [Younes et al. 2004]
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δ = 0.5·10−2
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Tandem Queuing Network 
(results) [Younes et al. 2004]
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Case Study:
Symmetric Polling System

 Single server, n polling stations
 Stations are attended in cyclic order
 Each station can hold one message
 State space of size O(n·2n)

Server

…Polling stations

λ λ λ λ
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Symmetric Polling System 
(results) [Younes et al. 2004]
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Symmetric Polling System 
(results) [Younes et al. 2004]
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Symmetric Polling System 
(results) [Younes et al. 2004]

numerical (ε=10−6)
α=β=10−2

α=β=10−4

α=β=10−6

α=β=10−8

α=β=10−10

δ

Ve
rif

ic
at

io
n 

tim
e 

(s
ec

on
ds

)

10−1

100

101

102

10−4 10−210−3

n = 10
T = 40
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Tandem Queuing Network: 
Distributed Sampling
 Use multiple machines to generate samples

 m1: Pentium IV 3GHz
 m2: Pentium III 733MHz
 m3: Pentium III 500MHz

44.8533.89336726.2914216565535
1.931.4630701.281426602047
0.580.5029710.4610207063

timetimem2m1timem3m2m1n
m1 only% samples% samples
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Summary

 Acceptance sampling can be used to 
verify probabilistic properties of systems

 Sequential acceptance sampling adapts 
to the difficulty of the problem

 Statistical methods are easy to 
parallelize
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Other Research

 Failure trace analysis
 “failure scenario” [Younes & Simmons 2004a]

 Planning/Controller synthesis
 CSL goals [Younes & Simmons 2004a]

 Rewards (GSMDPs) [Younes & Simmons 2004b]
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Tools

 Ymer
 Statistical probabilistic model checking

 Tempastic-DTP
 Decision theoretic planning with 

asynchronous events
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