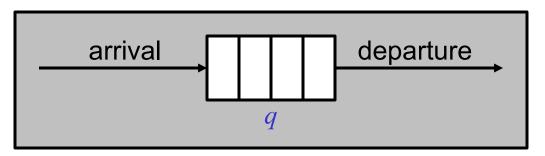
Probabilistic Verification for "Black-Box" Systems

Håkan L. S. Younes Carnegie Mellon University



"The probability is at least 0.1 that the queue becomes full within 5 minutes"

Probabilistic Model Checking

- Given a model M, a state s, and a property Φ , does Φ hold in s for M?
 - Model: stochastic discrete event system
 - Property: probabilistic temporal logic formula
- Solution methods:
 - Numerical computation of probabilities
 - Statistical hypothesis testing and simulation (randomized algorithm)

Temporal Stochastic Logic

- Standard logic operators: $\neg \Phi, \Phi \land \Psi, \dots$
- Probabilistic operator: $\mathcal{P}_{\geq \theta}[\varphi]$
 - Holds in state s iff probability is at least of for paths satisfying of and starting in s
- Until: $\Phi \mathcal{U}^{\leq T} \Psi$
 - Holds over path σ iff Ψ becomes true along σ within time *T*, and Φ is true until then

Property Example

"The probability is at least 0.1 that the queue becomes full within 5 minutes"

• $\mathcal{P}_{\geq 0.1}[\top \mathcal{U}^{\leq 5} full]$

Younes

Black-Box Verification

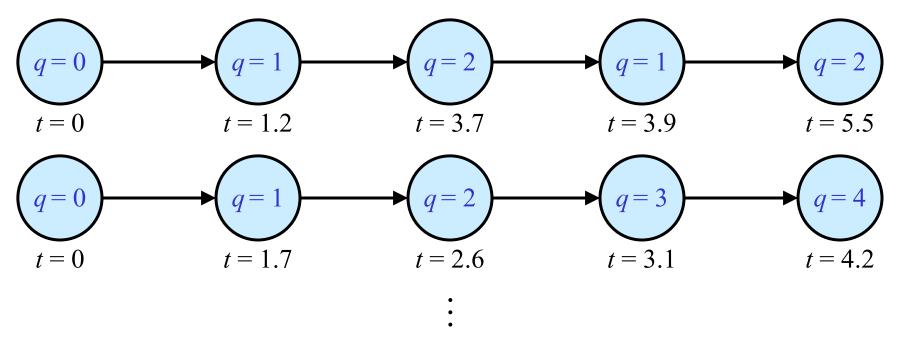
- What if the system is a black box?
 - Unknown system dynamics (no model)
 - Information about system must be obtained through observation during actual execution
 - Numerical computation and discrete-event simulation not possible without model

System Execution Traces departure arrival **q** q = 0q=2q=1q=1*t* = 1.2 *t* = 3.7 *t* = 3.9 *t* = 5.5 t = 0q = 0q = 3q = 2a=1= 4*t* = 4.2 t = 0*t* = 1.7 *t* = 2.6 t = 3.1

Younes

Probabilistic Verification using System Execution Traces

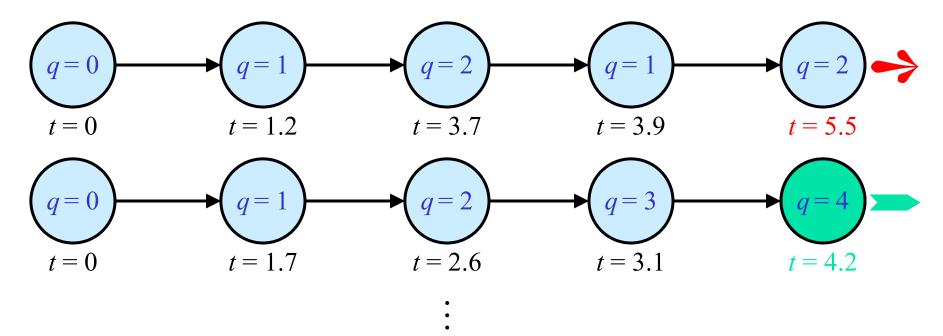
Does $\mathcal{P}_{\geq 0.1}[\top \mathcal{U}^{\leq 5} full]$ hold?



Younes

Verifying Path Formulae

Does $\top \mathcal{U}^{\leq 5}$ *full* hold?



Younes

Verifying Probabilistic Formulae

- Verify $\mathcal{P}_{\geq \theta}[\varphi]$ given *n* execution traces:
 - 1. Verify ϕ over each execution trace
 - 2. Let d be the number of "positive" traces
 - 3. Accept $\mathcal{P}_{\geq \theta}[\varphi]$ as true if *d* is "sufficiently large" and reject $\mathcal{P}_{\geq \theta}[\varphi]$ as false otherwise

Measure of Confidence: *p*-value

- Low *p*-value implies high confidence
- Definition of *p*-value:
 - Probability of the given or a more extreme observation provided that the rejected hypothesis is true

Measure of Confidence: *p*-value

Probability of observing at most *d* positive traces given a *p* probability measure for the set of positive traces:

$$F(d;n,p) = \sum_{i=0}^{d} \binom{n}{i} p^{i} (1-p)^{n-i}$$

Accept
$$\mathcal{P}_{\geq \theta}[\boldsymbol{\varphi}]$$
Reject $\mathcal{P}_{\geq \theta}[\boldsymbol{\varphi}]$ p-value $1-F(d-1;n,\theta)$ $F(d;n,\theta)$

Younes

Choosing the Acceptance Threshold

- When is d sufficiently large?
 - Compute *p*-value for both answers
 - Choose answer with lowest *p*-value
 - No need to compute explicit threshold
- Note: Sen et al. (CAV'04) use [nθ]-1 as threshold, which can lead to an answer with a larger *p*-value than the alternative

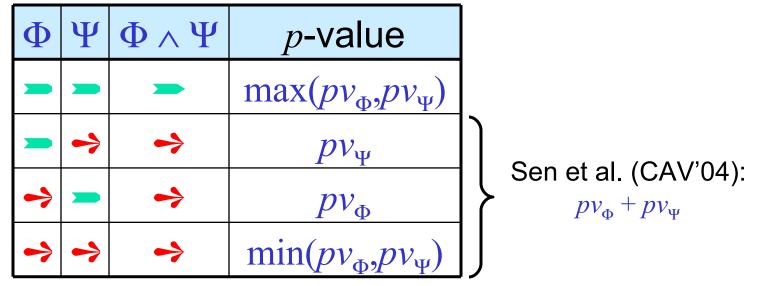
Example

- Should we accept P_{≥0.1}[⊤ U^{≤5} full] if we have 37 positive and 63 negative traces?
 - Acceptance: $1 F(36; 100, 0.1) \approx 5.48 \cdot 10^{-13}$
 - Rejection: $F(37; 100, 0.1) \approx 1 10^{-13}$

Computing *p*-values for Composite Formulae

• Negation $\neg \Phi$:

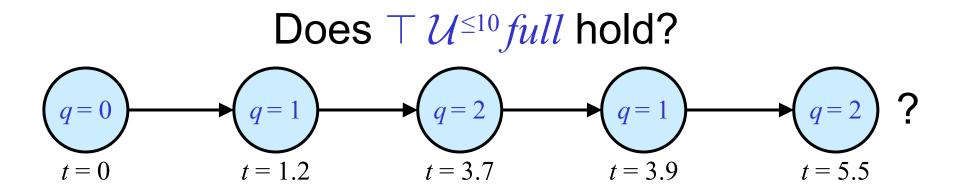
- same p-value as for Φ
- Conjunction $\Phi \land \Psi$:



Younes

Handling Truncated Traces

Execution traces are finite



Handling Truncated Traces

- Computing *p*-value intervals:
 - n' verifiable traces of n total traces
 - d' positive traces of n' verifiable traces
 - Between d' and d' + n n' total positive traces

	Accept $\mathcal{P}_{\geq \theta}[\boldsymbol{\varphi}]$	Reject $\mathcal{P}_{\geq \theta}[\boldsymbol{\varphi}]$
<i>p</i> -value	$[1-F(d_{\max}-1;n,\theta),$	$[F(d_{\min};n,\theta),$
	$1-F(d_{\min}-1;n,\theta)$]	$F(d_{\max}; n, \theta)$]

Black-Box Verification vs. Statistical Model Checking

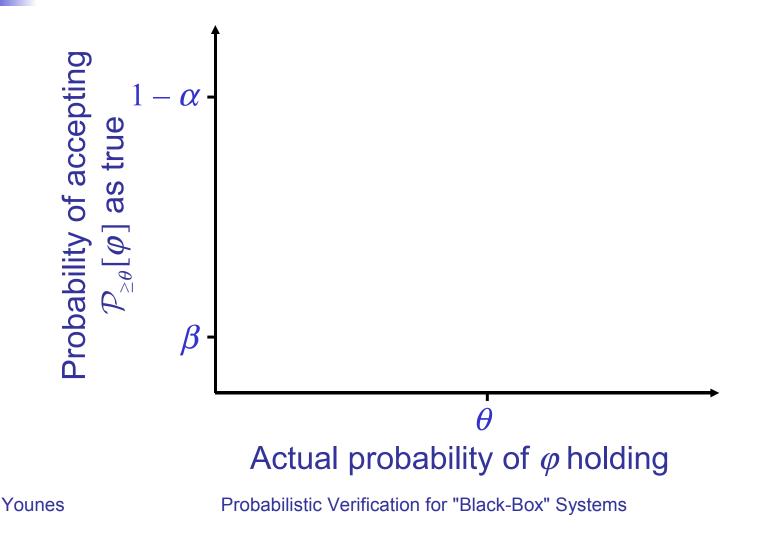
- Black-box verification
 - Fixed set of execution traces
 - Find answer with lowest *p*-value
- Statistical model checking
 - Traces can be generated from model
 - User determines a priori error bounds
 - Number of traces depends on error bounds

Error Bounds for Statistical Model Checking

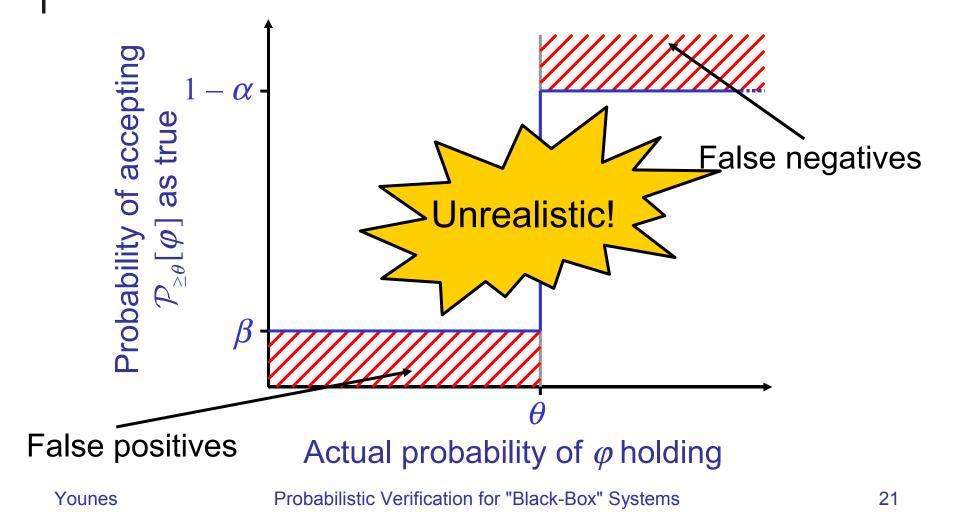
- Probability of false negative: $\leq \alpha$
 - We say that Φ is false when it is true
- Probability of false positive: $\leq \beta$
 - We say that Φ is true when it is false

 $(1 - \alpha)$ complete $(1 - \beta)$ sound

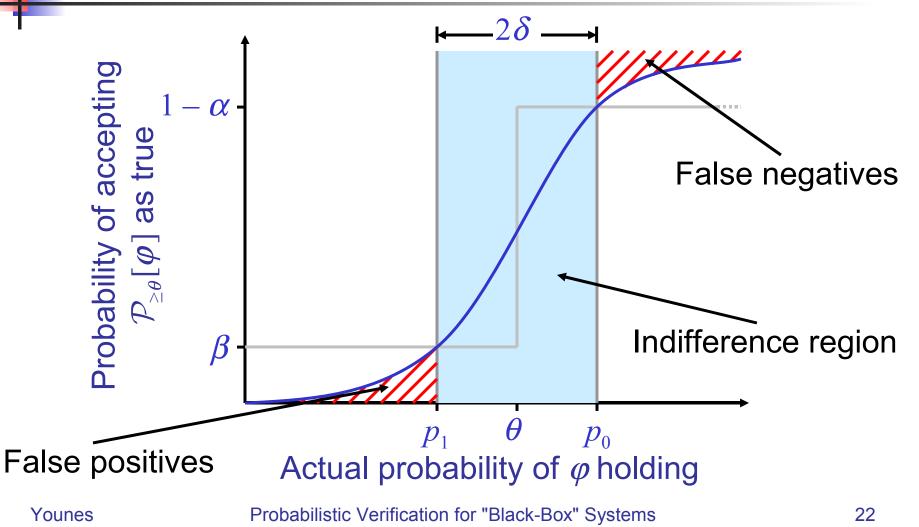
Operational Characteristics of Statistical Model Checking



Ideal Operational Characteristics



Realistic Operational Characteristics



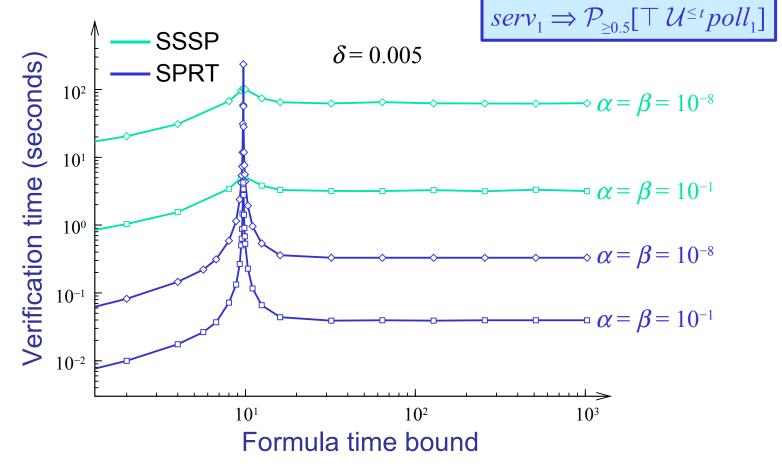
How to Achieve Error Bounds

- Fixed-size sample (single sampling plan)
 - Pick sample size *n* and acceptance threshold *c* such that $F(c; n, p_0) \le \alpha$ and $1 - F(c; n, p_1) \le \beta$
- Sequential Probability Ratio Test (SPRT)
 - At each stage, compute probability ratio f
 - Accept if $f \le \beta / (1 \alpha)$; reject if $f \ge (1 \beta) / \alpha$; generate additional traces otherwise
 - Sample size is random variable

Error Bounds for Composite Formulae

- Negation $\neg \Phi$:
 - $\alpha = \beta_{\Phi}$
 - $\beta = \alpha_{\Phi}$
- Conjunction $\Phi \land \Psi$:
 - $\alpha = \min(\alpha_{\Phi}, \alpha_{\Psi})$ • $\beta = \max(\beta_{\Phi}, \beta_{\Psi})$ • Younes & Simmons (CAV'02); Sen et al. (CAV'05): $\beta = \beta_{\Phi} + \beta_{\Psi}$

Single Sampling Plan vs. Sequential Probability Ratio Test



Younes

Complexity of Statistical Approach

- Complexity of verifying $\mathcal{P}_{\geq 0.1}[\Phi \mathcal{U}^{\leq t} \Psi]$ is $O(n \cdot e \cdot q \cdot t)$
 - n: sample size
 - *e*: simulation effort per transition
 - q: expected number of transition per time unit

Statistical Model Checking of Unbounded Until

- Time bound guarantees that finite sample paths suffices
- Sen et al. (CAV'05) use "stopping probability" to ensure finite sample paths
 - In reality, stopping probability must be extremely small to give any correctness guarantees (10⁻⁸ for |S|=10; 10⁻¹⁷ for |S|=20)

Do not overestimate the power of statistical methods!

Conclusions

- Black-box verification useful to analyze system based on existing execution traces
- Statistical model checking useful when sample paths can be generated at will
- Complementary, not competing, approaches

Ymer: A Statistical Model Checker

- http://sweden.autonomy.ri.cmu.edu/ymer/
 - Distributed acceptance sampling