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Abstract

We consider a special type of continuous-time Markov deci-
sion processes (MDPs) that arise when phase-type distribu-
tions are used to model the timing of non-Markovian events
and actions. We focus, primarily, on the execution of phase-
dependent policies. Phases are introduced into a model to
represent relevant execution history, but there is no physical
manifestation of phases in the real world. We treat phases
as partially observable state features and show how a belief
distribution over phase configurations can be derived from
observable state features through the use of transient analy-
sis for Markov chains. This results in an efficient method
for phase tracking during execution that can be combined
with the Qupp value method for POMDPs to make action
choices. We also discuss, briefly, how the structure of MDPs
with phase transitions can be exploited in structured value it-
eration with symbolic representation of vectors and matrices.

Introduction

The continuous-time Markov decision process (MDP), with
exponentially distributed holding times in states, is an attrac-
tive model for decision theoretic control of asynchronous
systems. Continuous-time MDPs can, in fact, be solved

observable during execution of the policy, however, so to
execute phase-dependent policies, we need a way to derive
phase configurations from observable features of the world.

Younes & Simmons(2004 simulate phase transitions
during execution to obtain phase configurations that can be
used to guide action selection. This paper provides a more
robust method for phase tracking basediamsient analy-
sis for Markov chains $tewart 1991 We treat phases as
partially observable state variables and provide a method
for computing a belief distribution over phase configurations
for any given situation during execution. Given an observa-
tion of the world, which includes the physical state and the
time that any event has remained enabled without trigger-
ing, we use th&)\pp value method for POMDP4. {ttman,
Cassandra, & Kaelbling 199%o rank action choices. This
method is well suited for MDPs with phase transitions be-
cause there is typically no gain in taking actions solely for
the purpose of obtaining information about phase configu-
rations. We demonstrate that this new phase-tracking tech-
nique clearly outperforms the simulation-based method sug-
gested byyounes & Simmong2004). We are able to earn
near optimal reward with relatively few phases.

In addition to a new phase-tracking technique, we show

using the exact same techniques as discrete-time MDPs how the specific structure of MDPs with phase transitions

(Howard 1960 Lippman 1975 Puterman 1994 so recent
progress in the Al literature on solving discrete-time MDPs
(e.g.Boutilier, Dearden, & Goldszmid200Q Guestrinet al.
2003 applies to continuous-time models as well.

Many phenomena in nature are, however, best modeled
with non-exponential distributions, for example, the lifetime
of a product Nelson 198% or a computer proces&éland
& Ott 1986). Phase-type distribution@Neuts 198) can ap-
proximate any positive hon-exponential distribution with a
Markov chain. This means, in particular, that a decision pro-
cess with non-exponential holding-time distributions, such
as a semi-Markov decision processofvard 197) or gen-
eralizedsemi-Markov decision procesgqunes & Simmons
20049, can be approximated by an MDP. This MDP can then
be solved using standard techniques. A state of the approxi-
mating MDP includes phase information that models the his-
tory dependence of non-exponential distributions, so a pol-

icy for the MDP may be phase-dependent. Phases are not
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can be exploited by exact solution methods. In particular,
we show that the planning time and memory requirements
of structured value iteration with ADD$Hpey et al. 1999

can be reduced significantly by taking into account the fact
that some state variables represent phases.

We start by providing background on phase-type distri-
butions and generalized semi-Markov decision processes
(GSMDPs). This is meant to give the reader a better idea
of how continuous-time MDPs with phase transitions arise.

Phase-Type Distributions

The memoryless property of the exponential distribution is
instrumental in making optimal planning with continuous-
time MDPs tractable. Continuoyshase-type distributions
(Neuts 198) generalize the exponential distribution to per-
mit history dependence in the form phaseswhile main-
taining analytical tractability.

In general, a phase-type distribution withphases rep-
resents time from entry until absorption in a Markov chain
with n transient states and a single absorbing state.nAn
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phase continuous phase-type distribution is specified using d
n? + 2n parametersi(and; range betweem andn): stoppe

e )\;, representing the exit rate for phase stop

® p;;, representing the probability that phasis followed
by phasej; ¢; = 1 — Y7, pi; is the probability that
absorption occurs immediately following phase

e T;, representing the probability that the initial phase is positive distribution. and a next-state distributign (-; s).
Let Q = [gi;], With gs = —i(1 — pu) andgi; = Asps; The distributionG. governs the time from whenbecomes
AP %’JI 7 i et th Pii \ati q”d'_t .6103[4 enabled until it triggers, provided remains continuously

(i # j), and let7 = [r;]. Then the cumulative distribution oo p10 g during that time period. The enabled events in a
function for a phase-type distribution is given BY¢) =

. X . ! A
1 — 7eQte, whereé is a unit column vector of size. The state race fo trigger first. Whentriggers ins, pe(s's ) is

matrix Q is called thegeneratorfor a Markov chain the probability that the next statess
9 e To see that the GSMP truly is a generalization of the semi-
.The n_umber of parameters needed to §pecn‘y a phase-typeMarkov process, consider the model in Figravith five
distribution can be_proh|b|t|ve. We resirict our attention to events:start StO[,) service, return, andfail. Thefail event
thhe Erlang ldlstrlbutlorsegrlang 1912\ 'nE”;'S pa:jpetr,_t\)/v?_lch is enabled in multiple states. If the trigger-time distribution
aﬁ S stlhng € ﬁtar?me rhorir;':myﬁ. n w[la?gthlstirrlnu ion nt for fail is not memoryless (e.g. a Weibull distribution repre-
can be thoughtofas a cha m_b_ ases where the time spent senting an increasing failure rate), then the time to failure in
in each phase, before a transition to the next phase occurs, ISpoth the “stopped” and the “running” state may depend on
exRonhentlaItIy d'sg.“?‘%éef_ w%)tfr}raté (g |gureé)t. imate the entire execution history of the process. In particular, the
phase-type distributioir/1 can be used 1o approXimate ¢, eyent remains enabled isgart or stop event occurs, but
a'ger)eral_lr_)r(])&tlve d|str|pum@, fordexample ahwe'tgu”hdﬁ' is disabled by aervice event. The execution history of a
tribution. The most straightforward approach is thetho : _
of momentswhich matches the first moments ofG and GSMP can be captured by adding a real-valued cioctor

. . : each event, to the description of states, with recording
PH. Closed-form sql_unon_s exist for matching up to three the time thate has remained continuously enabled without
moments of any positive distribution, so the method of mo-

; ; X triggering. Thus, ordinarily, general state spads required
:nents IS fast.t\(ogréela SLPSlm_rs;]oniZtQOLI) US?.S‘ th':/lg'gth()d to model a finite-state GSMP as a semi-Markov process.
0 approximate . S with continuous-time MDFS. A decision dimension is introduced by distinguishing a set
In this paper, we instead use an Erlang distribution with

< S A C E of actions and adding a reward structure. We assume
Eg?rseees d?rittrggteﬁggftalenrﬂmr%prﬁ S”e/ 5)#12hse?mgfe thed traditional reward structure for continuous-time decision
R phases. " '~ “processes with a lump-sum reward s, s’) associated with
distributions we use have a low coefficient of variation (the

e L . the transition froms to s’ caused by the triggering ef and
standard deviation divided by the mean). It is known that a continuous reward rate; (s) associated with the set of ac-

with n phases, the coefficient of variation is ag!)eas?_ for tions B C A being enabled i (cf. Howard1977). Like
axcogtmgjous phﬁse'téprf r?ls(tjrilbtl:ittl)or:i’ ng ?&Cg'ﬁved Younes & Simmong2004), we consider infinite-horizon
‘139%0 yMy f‘r;?_'p a\s/e ang tS ; u é’.'ﬁ‘(.bog.s .tﬁﬁ)p discounted reward with discount rate This means that re-
f?.' . ?Cf ing 0 0 moments OI a distn g |oan|h OW" ward earned at time counts as=—“* or, alternatively, that
coetticient of variation réquires a fargeé NUMber of pnases. - ypare s g termination event with exponential trigger-time

e rveran e woenm a5 e oo disbuion haing rate (Hovrd 1960 A6 an example
o , ’ . of a GSMDP, consider the model in FiguPewith actions
sophisticated, but also more expensive, methods are avail- represented by solid arrows. A negative reward rate in the
able (e.gAsmussen, Nerman, & Olssdr99§. “serviced” state can be used to represent the cost of service.

. . - If all trigger-time distributions are memoryless, then a
Generalized Semi-Markov Decision Processes  gsmpp is simply a continuous-time MDP with a factored
Younes & Simmon$2004) introduced theeneralized semi- transition model. A GSMDP with state spaSeand event
Markov decision proces&SMDP) as a decision theoretic  setFE can be approximated by a continuous-time MDP with
extension of the GSMP formalism for discrete event sys- state spacé’ and event sek’ by using phase-type distribu-
tems. A time-homogeneous GSMBIynn 1989 consists tions. Each non-exponential trigger-time distribution in the
of a set of state$ and a set of event®. We assume that GSMDP is approximated by a phase-type distribution, as de-
these sets are finite in this paper. At any time, the process scribed byYounes & Simmon$2004). The new state space
occupies some state € S in which a subsef(s) of the S’ is still finite and includes phase information that can be
events are enabled. Associated with each eventF is a seen as a discretization intandom-length intervalsf the

Figure 2: GSMP witHail event enabled across transitions.
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clockst,.. The event sel’ includes regular state transitions
from the original model, but also phase transitions.

It is well-known that the continuous-time MDP with dis-
counting is computationally equivalent to its discrete-time
counterpartiffoward 196QLippman 197%. In fact, the stan-
dard solution method isiniformization (Puterman 199%
which can be interpreted as transforming a continuous-time
MDP into an equivalent discrete-time MDP.

A continuous-time MDP can be solved directly as well.
In states, with actionsB chosen to be enabled, the events
Egp(s) = E(s) \ (A \ B) are enabled. Lek. denote the
rate of the exponential trigger-time distribution for event
e. Treatinga as the rate of a termination event, the
exit rate for states with actions B enabled isA%(s)
@+ X eep,(s) Ae- Since all trigger-time distributions are
exponential, the probability that eventtriggers first is
Ae/A%(s) and the probability that termination occurs be-
fore any events can trigger is/\%(s). With 75(s) =
cB(S) + Xeemp(s) Ae 2osres Pe(s's 8)ke(s, s'), we can ex-
press the)-value of any pais, B) as follows:

FB(S) Ae
356) "2 50
= RB(s) + S,ze:s Pg(s';s) glcaﬁQ(s ,C)

Q(S7B) =

> pe(s's5) maxQ(s', C)

s'eS

Here, R%(s) is the expected reward inwith actionsB en-
abled, andPg(s'; s) = > _.cp (g Pe(5'35)Ae/ AR (5) is the
probability thats’ follows s. Note thaty | (s'58) <1
due to discounting.

o
S’GSPB

Factored State Spaces and State Filtering

So far, we have assumed no specific structure for the state
spaceS. Commonly, MDPs are specified usingactored
state spacevith a set of state variable8¢utilier, Dearden,
& Goldszmidt 2000. This section considers the exact so-
lution of continuous-time MDPs with factored state spaces,
and discusses a technique for exploiting the structure of such
processes when some state variables reprggerges We
assume a factored transition model, and associate an en-
abling conditiony.. (a logic formula over the state variables)
with each event such thatE(s) = {e | s = ¢.}-

The@-value recurrence in the previous section can be ex-
pressed in matrix-vector form. Lt = [R%(i)], P%

[P&(j;4)], andV* = [maxcca Q(i, C)]. We then have

Q(B)=R% +P% - V* .

Given a factored representation of the state spacee-
fined by a set of state variabl&d/, it is possible to repre-
sent the vectors and matrices as ADQafkeet al. 1993
Baharet al. 1993 defined over variablesV,, U SV}, =
{v1,...,0,0],...,v}, whereSVy, is a binary encoding
of the state variable$V usingb bits and SV are next-
state versions ofVy,. The Q-value for any pair(s, B)
can then be computed using structured value iteration with
ADDs (Hoeyet al. 1999.

ADDs generally permit a succinct representation of re-
ward vectors and transition probability matrices, even for
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very large state spaces. This does not guarantee, however,
that the@-value vector for an action set also has a compact
ADD representation. In fact, it is often the case that the
ADD representation of &-value vector grows with each it-
eration, which adversely affects solution time and memory
requirements. Moreover, factored representations can intro-
ducespurious stategassignments to state variables that do
not correspond to states B). It is needless to computg-
values for spurious states, but it may be difficult, in general,
to determine if a specific variable assignment is feasible.

When some of the state variables represent phases, how-
ever, certain spurious states become obvious immediately.
Let ¢. be a state variable representing the phase of the
trigger-time distribution for everd. If e is disabled in state
s, then the phase afis inconsequential. By convention, let
w. = 1in this case. Any assignment of the state variables
such thatp, is false andp. > 1 is hence invalid. Further-
more, if at most one action can be enabled at any time (sin-
gle agent system), then any assignment with> 1 and
war > 1, fora # d/, is also invalid. Finally, a binary encod-
ing of multi-valued state variables introduces spurious states
if the number of values for all variables is not a poweppf
and this is true not only for phase variables.

Let f = [f(v1,..., )], with f(vy,...,v,) equal to0 if
v1,..., 0 IS Known to be invalid, and equal tootherwise.
The Q-value recurrence can now be expressed as

Q(B) = fo(Ry + Py V") .

The vectorf acts as dilter that forces the-value to be
zero for known invalid variable assignments (the operator
represents element-wise multiplication). We can apply the
filter in every iteration, or we can apply the filter oncel?g
andP¢ before the first iteration. In the evaluation section,
we show that state filtering can reduce planning time and
memory requirements notably.

Execution of Phase-Dependent Policies

When solving a continuous-time MDP with some events
representing phase transitions, we get a phase-dependent
policy. The phases are fictitious, however, and do not cor-
respond to physical (observable) features in the real world.
By solving the problem as if phases were observable, we
temporarily ignore the observation model of the actual pro-
cess. This section describes how to maintain a belief dis-
tribution over possible phase configurations during policy
execution. This belief distribution, computed using regular
transient analysigor Markov chains, is used together with
the Qupp Value method for POMDP4. {ttman, Cassandra,

& Kaelbling 1995 to evaluate action choices.

Phase Tracking through Transient Analysis

To take advantage of the phase-dependent aspects of a policy
during execution, we need to infer phase configurations from
observable features of the environment. We assume that the
physical state of the process is fully observable and that we
know when an event triggers. This means that, at any point
in time, we have complete knowledge of the set of enabled



events and, consequently, we know for how long any partic-

a continuous quantity in our case. The action choice may

ular event has been enabled. An observation can thus be seertherefore have to change continuously during execution, but

as consisting of the physical stateand a vector” = [r;],
wherer; is the time that théth non-Markovian event has
been continuously enabled without triggering & 0 for
disabled events). The goal is to compute a belief distribu-
tion p(&; s, T) over phase configurations.

We note that the phase of an event is independent of any
information concerning other events. This means, in partic-
ular, thatp(Z; s, 7) = [, pi(vi; s, 7:), SO we can perform
belief tracking for each individual phase separately. If event
e; is disabled ins, thenp; (¢;; s, ;) is 1 for p; = 1 and0 for
p; > 1. Otherwise, ife; is enabled ins, then we compute
pi(ps; 8, 7;) using transient analysis, as described next.

Each phase; represents the state in a transient Markov
chain with generator matrixQ; and initial-state distribu-
tion 7;. The probability distribution over states at time
for this Markov chain is given byt;eQ:* (Stewart 1994
p.407). Hence, we havg (s, 7;) = [pi(j; s, 7)] = TieQm.
This probability distribution can be computed numerically
through the use ofiniformization as first described by
Jensen{1953, which transforms a continuous-time Markov
chain with generator matri€ into a discrete-time Markov
chain with transition probability matri® = I + Q/q, with
q > max; q;;. Through Taylor expansion, we get

oo

7eQ =7 Z e
k=0
In practice, this infinite summation is truncated by using the
techniques ofFox & Glynn (1988 so that the truncation er-
ror is bounded by an a priori error tolerance The Fox—
Glynn method requireg - t + /2q - t - o(y/log 1/€) + 3/2
matrix-vector multiplications. The dependenceedn gen-
erally negligible, so the time complexity(q-t- M), where
M is the time complexity for a single matrix-vector multi-
plication. For am-phase Erlang distributiory is O(n).
The belief distributiorp(Z; s, 7) may have some positive
probability mass associated with phase configurations where

7-t(‘I‘t)k k
q T Pr .

a phase has reached the absorbing state. Absorption for a

phase-type distribution represents triggering of an event, but
we know whether an event has triggered or not. We there-

this is impractical. We suggest that belief updates are made
at a regular interval\. Belief updates should also be made
every time an actual state transition occurs. This means that
the current action choice is reconsidered at the time of state
transitions, but also everi time units while remaining in a
specific state. Note that(¢;;s,t + A) = 7;eQteQid =
pi(pi;s,t)eQ2, so belief distributions can be updated at
each stage by using transient analysis witly;; s, t) as the
initial-state distribution and\ as time bound.

Empirical Evaluation

We now show, empirically, that phase tracking based on
transient analysis notably outperforms the phase-tracking
method proposed byfounes & Simmons(2004. We
also demonstrate the effect of state filtering for solving
continuous-time MDPs with phase transitions. The results
have been generated on a 3GHz Pentium 4 PC running
Linux, and with an 800 MB memory limit set per process.
Our first test case is a variation of Howard’s “the Fore-
man'’s Dilemma” Howard 1960 and the preventive mainte-
nance problem used byounes & Simmong2004). The
model is a slight abstraction of the model shown in Fig-
ure 2, with the “stopped” and “running” states represented
by a single “working” state. Theervice action andreturn
event have exponential trigger-time distributions with rates
10 and1, respectively. The trigger-time distribution ftail
is W(1.6x,4.5), a Weibull distribution representing an in-
creasing failure rate. We vary betweenl and 40, with
higher values meaning a higher expected failure time. The
reward rate igl for the “working” state,—0.1 for the “ser-
viced” state, and for the “failed” state. Once failure occurs,
no more reward can be earned. The optimal policy is to en-
able the service action aftey time units in the “working”
state, where, depends on the failure time distribution.
Because the problem is relatively simple, we can find the
optimal value fort, using numerical function optimization
(and numerical integration over semi-infinite intervals for
our failure time distribution). This gives us a reference point
for the performance of the approximate solution technique

that uses phase-type distributions. The problem can also be
modeled and solved as an SMDP because no event can re-
main enabled across state transitions. Standard SMDP so-
lution techniqguesHoward 197}, however, permit an ac-
tion to be enabled only immediately in a state (correspond-
ing tot, = 0) or not at all ¢, 00). Figure 3 shows
the performance in terms of expected discounted reward
(o« = —1og0.95), relative to optimal, for the phase-type
approximation technique and the standard SMDP solution
technique. The policies generated by the latter perform far
below optimal (asc increases, the mean time to failure in-
creases and discounting makes failure less of a factor). By
approximating the failure time distribution with an Erlang
distribution, better performance is achieved. Note, however,
that the reward earned by simulating phase transitions is still
normalized belief distribution to compufg-values. far from optimal. The performance is much improved by
This is straightforward application of th@\pp value using the phase-tracking technique presented in this paper.
method. An observation includes time, however, which is Better performance than for phase simulation is achieved

fore derive a normalized belief distributigi{Z; s, 7) that
excludes any mass associated with the triggering of an event.

Action Selection

Given that we can compute a belief distribution over phase
configurations from an observatidg, 7), we can use the
Qwpp Value method to compute the expected value of an
action setB C A in any given situation:

Q(s,7,B) = > _p(&:s,7) - Quop(s, 5, B)
3

The action set with maximur®-value, according to this for-
mula, is the action set that should be selected for execution
when the observatiofs, 7) is made. Note that we use the
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Figure 3: Percentage of optimal expected reward for mainte-

nance problem with failure time distributidi (1.6z, 4.5).

with fewer phases, and withphases and\ = 0.5, the per-
formance is near optimal. The solution time for the models
with a phase-type approximation is only a few milliseconds.
Figure4 plots the optimal value faf,, as well as the value
of ¢, for the different approximate solution techniques. The
standard SMDP solution resultséin = 0, which means that
failure is typically avoided, but reward is wasted in the “ser-
viced” state. By simulating phase transitions, on the other
hand, theservice action is enabled too late on average. The
phase-tracking method results in values ofmuch closer to
optimal. We plott, when using8 phases and two different
values of A. Note that a lower value foA is not always

optimal —
n=8A=05—

n=8 A=2
n =8, simulate - - -

10 15 20 25 30
Figure 4: Average delay for enabling of teervice action

in the “working” state.

reduce the planning time significantly, even when the num-
ber of phases is a power ?f Furthermore, witm = 5 and
without filtering, memory is exhausted already for= 8.
Note also that applying the filter in every iteration is bet-
ter than to pre-filter reward vectors and transition probabil-
ity matrices, because pre-filtering results in more complex
ADD representations or vectors and matrices.

Discussion
We have provided a new technique for tracking phase config-
urations during execution of phase-dependent policies. The
technique relies on efficient numerical methods for transient

better, as might otherwise be expected. This is because theanalysis of Markov chains, so the computational burden

phase-type distribution does not perfectly match the actual
failure time distribution. Currently, we have no method for
choosing the besh other than experimentation.

Our second test case is a system administration problem
used byYounes & Simmong2004). In this problem, there
is a network ofm computers, with each computer being ei-
ther up or down. There is a crash event for each computer
with trigger-time distributionFzp(1). A reboot action with
trigger-time distributiori/ (0, 1) is available for each com-
puter that is currently down. The reward rate for a state is
equal to the number of computers that are up. We assume
that at most one reboot action can be enabled at any time.

Unlike the previous test case, this is not an SMDP (except
for m = 1) since a reboot action may remain enabled across
state transitions, so we cannot solve this problem using stan-
dard SMDP techniques. The obvious solution is to reboot a
computer whenever it goes down, and wait until rebooting
is finished before going on to reboot another computer. We
get this exact solution by using phase-type approximations
of reboot time distributions and transient analysis to track
phases. It is sufficient to perform phase tracking only at the
time of state transitions{ = oo). Figure5 plots the ex-
pected discounted reward for different number of phases and

for phase tracking is small during execution. Furthermore,
we need to perform transient analysis only on the Markov
chains that represent phase-type distributions, which typ-
ically are very limited in size. We have demonstrated,
through experimental evaluation, that the proposed phase-
tracking method can result in near optimal performance (in
terms of expected reward) even with a small number of
phases. The new method clearly outperforms the method
proposed byYounes & Simmong2004, which simulates
phase transitions during execution. These results are very
general, as they are not tied to a particular solution method
for MDPs. We have used structured value iteration in this
paper, and we have shown that MDPs with phase transi-
tions have specific structure that can be exploited to reduce
the planning time for this method, but any solution method
could be used to solve the MDP. For example, one could use
the approximate solution method presentedGuestrinet

al. (2003 to handle large state spaces.

MDPs with phase transitions arise, for example, when a
GSMDRP is approximated with an MDP by approximating
each non-exponential trigger-time distribution with a phase-
type distribution. We have seen that a GSMDP with finite
state space can be modeled ageaeral-statgboth discrete

phase-tracking techniques. We see, again, that our proposedand continuous state features) SMDP. While there has been

phase-tracking technique outperforms the technique based
on simulation of phase transitions. We achieve optimal per-
formance using only two phases.

Figure6 shows the effect of state filtering on the solution
time of structured policy iteration with ADDs for the system
administration problem. We can see that state filtering helps
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some interesting recent work on solving general-state MDPs
(Fenget al. 2004 Guestrin, Hauskrecht, & Kveton 204
these solution methods are not well suited for GSMDPs be-
cause they can only capture the state of the GSMDP at the
time of state transitions (discrete dynamics). To act op-
timally in a GSMDP, it is important to account for what
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Figure 5: Expected discounted reward for system adminis- Figure 6: Effect of state filtering for system administration

tration problem withm computers.

problem withn = 4 (x) andn = 5 (+).

happens between state transitions. These methods could be Guestrin, C.; Hauskrecht, M.; and Kveton, B. 2004. Solv-

combined with the use of phase-type distributions, however,
to solve general-state GSMDPs.
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