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Abstract

We consider a special type of continuous-time Markov deci-
sion processes (MDPs) that arise when phase-type distribu-
tions are used to model the timing of non-Markovian events
and actions. We focus, primarily, on the execution of phase-
dependent policies. Phases are introduced into a model to
represent relevant execution history, but there is no physical
manifestation of phases in the real world. We treat phases
as partially observable state features and show how a belief
distribution over phase configurations can be derived from
observable state features through the use of transient analy-
sis for Markov chains. This results in an efficient method
for phase tracking during execution that can be combined
with the QMDP value method for POMDPs to make action
choices. We also discuss, briefly, how the structure of MDPs
with phase transitions can be exploited in structured value it-
eration with symbolic representation of vectors and matrices.

Introduction
The continuous-time Markov decision process (MDP), with
exponentially distributed holding times in states, is an attrac-
tive model for decision theoretic control of asynchronous
systems. Continuous-time MDPs can, in fact, be solved
using the exact same techniques as discrete-time MDPs
(Howard 1960; Lippman 1975; Puterman 1994), so recent
progress in the AI literature on solving discrete-time MDPs
(e.g.Boutilier, Dearden, & Goldszmidt2000; Guestrinet al.
2003) applies to continuous-time models as well.

Many phenomena in nature are, however, best modeled
with non-exponential distributions, for example, the lifetime
of a product (Nelson 1985) or a computer process (Leland
& Ott 1986). Phase-type distributions(Neuts 1981) can ap-
proximate any positive non-exponential distribution with a
Markov chain. This means, in particular, that a decision pro-
cess with non-exponential holding-time distributions, such
as a semi-Markov decision process (Howard 1971) or gen-
eralizedsemi-Markov decision process (Younes & Simmons
2004), can be approximated by an MDP. This MDP can then
be solved using standard techniques. A state of the approxi-
mating MDP includes phase information that models the his-
tory dependence of non-exponential distributions, so a pol-
icy for the MDP may be phase-dependent. Phases are not
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observable during execution of the policy, however, so to
execute phase-dependent policies, we need a way to derive
phase configurations from observable features of the world.

Younes & Simmons(2004) simulate phase transitions
during execution to obtain phase configurations that can be
used to guide action selection. This paper provides a more
robust method for phase tracking based ontransient analy-
sis for Markov chains (Stewart 1994). We treat phases as
partially observable state variables and provide a method
for computing a belief distribution over phase configurations
for any given situation during execution. Given an observa-
tion of the world, which includes the physical state and the
time that any event has remained enabled without trigger-
ing, we use theQMDP value method for POMDPs (Littman,
Cassandra, & Kaelbling 1995) to rank action choices. This
method is well suited for MDPs with phase transitions be-
cause there is typically no gain in taking actions solely for
the purpose of obtaining information about phase configu-
rations. We demonstrate that this new phase-tracking tech-
nique clearly outperforms the simulation-based method sug-
gested byYounes & Simmons(2004). We are able to earn
near optimal reward with relatively few phases.

In addition to a new phase-tracking technique, we show
how the specific structure of MDPs with phase transitions
can be exploited by exact solution methods. In particular,
we show that the planning time and memory requirements
of structured value iteration with ADDs (Hoeyet al. 1999)
can be reduced significantly by taking into account the fact
that some state variables represent phases.

We start by providing background on phase-type distri-
butions and generalized semi-Markov decision processes
(GSMDPs). This is meant to give the reader a better idea
of how continuous-time MDPs with phase transitions arise.

Phase-Type Distributions
The memoryless property of the exponential distribution is
instrumental in making optimal planning with continuous-
time MDPs tractable. Continuousphase-type distributions
(Neuts 1981) generalize the exponential distribution to per-
mit history dependence in the form ofphases, while main-
taining analytical tractability.

In general, a phase-type distribution withn phases rep-
resents time from entry until absorption in a Markov chain
with n transient states and a single absorbing state. Ann-

1030



1 2 . . . n

λ λ λ λ

Figure 1: Erlang distribution.

phase continuous phase-type distribution is specified using
n2 + 2n parameters (i andj range between1 andn):

• λi, representing the exit rate for phasei.

• pij , representing the probability that phasei is followed
by phasej; qi = 1 −

∑n
j=1 pij is the probability that

absorption occurs immediately following phasei.

• πi, representing the probability that the initial phase isi.

Let Q = [qij ], with qii = −λi(1 − pii) andqij = λipij

(i 6= j), and let~π = [πi]. Then the cumulative distribution
function for a phase-type distribution is given byF (t) =
1 − ~πeQt~e, where~e is a unit column vector of sizen. The
matrixQ is called thegeneratorfor a Markov chain.

The number of parameters needed to specify a phase-type
distribution can be prohibitive. We restrict our attention to
the Erlang distribution (Erlang 1917) in this paper, which
has a single parameterλ for anyn. An Erlang distribution
can be thought of as a chain ofn phases where the time spent
in each phase, before a transition to the next phase occurs, is
exponentially distributed with rateλ (Figure1).

A phase-type distributionPH can be used to approximate
a general positive distributionG, for example a Weibull dis-
tribution. The most straightforward approach is themethod
of moments, which matches the firstk moments ofG and
PH . Closed-form solutions exist for matching up to three
moments of any positive distribution, so the method of mo-
ments is fast.Younes & Simmons(2004) uses this method
to approximate GSMDPs with continuous-time MDPs.

In this paper, we instead use an Erlang distribution withn
phases that matches the meanµ of G (λ = n/µ). This gives
us freedom to select the number of phases. Furthermore, the
distributions we use have a low coefficient of variation (the
standard deviation divided by the mean). It is known that
with n phases, the coefficient of variation is at leastn−0.5 for
a continuous phase-type distribution, withn−0.5 achieved
exactly by ann-phase Erlang distribution (Aldous & Shepp
1987). Matching two moments of a distribution with low
coefficient of variation requires a large number of phases.

If a good fit for the distribution function is desired (and
the coefficient of variation is not less thann−0.5), then more
sophisticated, but also more expensive, methods are avail-
able (e.g.Asmussen, Nerman, & Olsson1996).

Generalized Semi-Markov Decision Processes
Younes & Simmons(2004) introduced thegeneralized semi-
Markov decision process(GSMDP) as a decision theoretic
extension of the GSMP formalism for discrete event sys-
tems. A time-homogeneous GSMP (Glynn 1989) consists
of a set of statesS and a set of eventsE. We assume that
these sets are finite in this paper. At any time, the process
occupies some states ∈ S in which a subsetE(s) of the
events are enabled. Associated with each evente ∈ E is a

stopped running

failedserviced

star t

stop

fail fail
ser vice

retur n

Figure 2: GSMP withfail event enabled across transitions.

positive distributionGe and a next-state distributionpe(·; s).
The distributionGe governs the time from whene becomes
enabled until it triggers, providede remains continuously
enabled during that time period. The enabled events in a
state race to trigger first. Whene triggers ins, pe(s′; s) is
the probability that the next state iss′.

To see that the GSMP truly is a generalization of the semi-
Markov process, consider the model in Figure2 with five
events:start, stop, service, return, andfail. Thefail event
is enabled in multiple states. If the trigger-time distribution
for fail is not memoryless (e.g. a Weibull distribution repre-
senting an increasing failure rate), then the time to failure in
both the “stopped” and the “running” state may depend on
the entire execution history of the process. In particular, the
fail event remains enabled if astart or stop event occurs, but
is disabled by aservice event. The execution history of a
GSMP can be captured by adding a real-valued clockτe, for
each evente, to the description of states, withτe recording
the time thate has remained continuously enabled without
triggering. Thus, ordinarily, ageneral state spaceis required
to model a finite-state GSMP as a semi-Markov process.

A decision dimension is introduced by distinguishing a set
A ⊂ E of actions and adding a reward structure. We assume
a traditional reward structure for continuous-time decision
processes with a lump-sum rewardke(s, s′) associated with
the transition froms to s′ caused by the triggering ofe, and
a continuous reward ratecB(s) associated with the set of ac-
tions B ⊂ A being enabled ins (cf. Howard1971). Like
Younes & Simmons(2004), we consider infinite-horizon
discounted reward with discount rateα. This means that re-
ward earned at timet counts ase−αt or, alternatively, that
there is a termination event with exponential trigger-time
distribution having rateα (Howard 1960). As an example
of a GSMDP, consider the model in Figure2 with actions
represented by solid arrows. A negative reward rate in the
“serviced” state can be used to represent the cost of service.

If all trigger-time distributions are memoryless, then a
GSMDP is simply a continuous-time MDP with a factored
transition model. A GSMDP with state spaceS and event
setE can be approximated by a continuous-time MDP with
state spaceS′ and event setE′ by using phase-type distribu-
tions. Each non-exponential trigger-time distribution in the
GSMDP is approximated by a phase-type distribution, as de-
scribed byYounes & Simmons(2004). The new state space
S′ is still finite and includes phase information that can be
seen as a discretization intorandom-length intervalsof the
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clocksτe. The event setE′ includes regular state transitions
from the original model, but also phase transitions.

It is well-known that the continuous-time MDP with dis-
counting is computationally equivalent to its discrete-time
counterpart (Howard 1960; Lippman 1975). In fact, the stan-
dard solution method isuniformization (Puterman 1994),
which can be interpreted as transforming a continuous-time
MDP into an equivalent discrete-time MDP.

A continuous-time MDP can be solved directly as well.
In states, with actionsB chosen to be enabled, the events
EB(s) = E(s) \ (A \ B) are enabled. Letλe denote the
rate of the exponential trigger-time distribution for event
e. Treating α as the rate of a termination event, the
exit rate for states with actionsB enabled isλα

B(s) =
α +

∑
e∈EB(s) λe. Since all trigger-time distributions are

exponential, the probability that evente triggers first is
λe/λα

B(s) and the probability that termination occurs be-
fore any events can trigger isα/λα

B(s). With r̄B(s) =
cB(s) +

∑
e∈EB(s) λe

∑
s′∈S pe(s′; s)ke(s, s′), we can ex-

press theQ-value of any pair〈s,B〉 as follows:

Q(s, B) =
r̄B(s)

λα
B(s)

+
X

e∈EB(s)

λe

λα
B(s)

X
s′∈S

pe(s
′; s)max

C⊂A
Q(s′, C)

= Rα
B(s) +

X
s′∈S

P α
B(s′; s)max

C⊂A
Q(s′, C)

Here,Rα
B(s) is the expected reward ins with actionsB en-

abled, andPα
B(s′; s) =

∑
e∈Es(B) pe(s′; s)λe/λα

B(s) is the
probability thats′ follows s. Note that

∑
s′∈S Pα

B(s′; s) < 1
due to discounting.

Factored State Spaces and State Filtering
So far, we have assumed no specific structure for the state
spaceS. Commonly, MDPs are specified using afactored
state spacewith a set of state variables (Boutilier, Dearden,
& Goldszmidt 2000). This section considers the exact so-
lution of continuous-time MDPs with factored state spaces,
and discusses a technique for exploiting the structure of such
processes when some state variables representphases. We
assume a factored transition model, and associate an en-
abling conditionφe (a logic formula over the state variables)
with each evente such thatE(s) = {e | s |= φe}.

TheQ-value recurrence in the previous section can be ex-
pressed in matrix-vector form. Let~Rα

B = [Rα
B(i)], Pα

B =
[Pα

B(j; i)], and~V ∗ = [maxC⊂A Q(i, C)]. We then have

~Q(B) = ~Rα
B + Pα

B · ~V ∗ .

Given a factored representation of the state spaceS, de-
fined by a set of state variablesSV , it is possible to repre-
sent the vectors and matrices as ADDs (Clarkeet al. 1993;
Baharet al. 1993) defined over variablesSV b ∪ SV ′

b =
{v1, . . . , vb, v

′
1, . . . , v

′
b}, whereSV b is a binary encoding

of the state variablesSV using b bits andSV ′
b are next-

state versions ofSV b. The Q-value for any pair〈s,B〉
can then be computed using structured value iteration with
ADDs (Hoeyet al. 1999).

ADDs generally permit a succinct representation of re-
ward vectors and transition probability matrices, even for

very large state spaces. This does not guarantee, however,
that theQ-value vector for an action set also has a compact
ADD representation. In fact, it is often the case that the
ADD representation of aQ-value vector grows with each it-
eration, which adversely affects solution time and memory
requirements. Moreover, factored representations can intro-
ducespurious states(assignments to state variables that do
not correspond to states inS). It is needless to computeQ-
values for spurious states, but it may be difficult, in general,
to determine if a specific variable assignment is feasible.

When some of the state variables represent phases, how-
ever, certain spurious states become obvious immediately.
Let ϕe be a state variable representing the phase of the
trigger-time distribution for evente. If e is disabled in state
s, then the phase ofe is inconsequential. By convention, let
ϕe = 1 in this case. Any assignment of the state variables
such thatφe is false andϕe > 1 is hence invalid. Further-
more, if at most one action can be enabled at any time (sin-
gle agent system), then any assignment withϕa > 1 and
ϕa′ > 1, for a 6= a′, is also invalid. Finally, a binary encod-
ing of multi-valued state variables introduces spurious states
if the number of values for all variables is not a power of2,
and this is true not only for phase variables.

Let ~f = [f(v1, . . . , vb)], with f(v1, . . . , vb) equal to0 if
v1, . . . , vb is known to be invalid, and equal to1 otherwise.
TheQ-value recurrence can now be expressed as

~Q(B) = ~f ◦ (~Rα
B + Pα

B · ~V ∗) .

The vector~f acts as afilter that forces theQ-value to be
zero for known invalid variable assignments (the operator◦
represents element-wise multiplication). We can apply the
filter in every iteration, or we can apply the filter once to~Rα

B
andPα

B before the first iteration. In the evaluation section,
we show that state filtering can reduce planning time and
memory requirements notably.

Execution of Phase-Dependent Policies
When solving a continuous-time MDP with some events
representing phase transitions, we get a phase-dependent
policy. The phases are fictitious, however, and do not cor-
respond to physical (observable) features in the real world.
By solving the problem as if phases were observable, we
temporarily ignore the observation model of the actual pro-
cess. This section describes how to maintain a belief dis-
tribution over possible phase configurations during policy
execution. This belief distribution, computed using regular
transient analysisfor Markov chains, is used together with
theQMDP value method for POMDPs (Littman, Cassandra,
& Kaelbling 1995) to evaluate action choices.

Phase Tracking through Transient Analysis
To take advantage of the phase-dependent aspects of a policy
during execution, we need to infer phase configurations from
observable features of the environment. We assume that the
physical state of the process is fully observable and that we
know when an event triggers. This means that, at any point
in time, we have complete knowledge of the set of enabled
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events and, consequently, we know for how long any partic-
ular event has been enabled. An observation can thus be seen
as consisting of the physical states and a vector~τ = [τi],
whereτi is the time that theith non-Markovian event has
been continuously enabled without triggering (τi = 0 for
disabled events). The goal is to compute a belief distribu-
tion p(~ϕ; s, ~τ) over phase configurations.

We note that the phase of an event is independent of any
information concerning other events. This means, in partic-
ular, thatp(~ϕ; s, ~τ) =

∏
i pi(ϕi; s, τi), so we can perform

belief tracking for each individual phase separately. If event
ei is disabled ins, thenpi(ϕi; s, τi) is 1 for ϕi = 1 and0 for
ϕi > 1. Otherwise, ifei is enabled ins, then we compute
pi(ϕi; s, τi) using transient analysis, as described next.

Each phaseϕi represents the state in a transient Markov
chain with generator matrixQi and initial-state distribu-
tion ~πi. The probability distribution over states at timet
for this Markov chain is given by~πie

Qit (Stewart 1994,
p. 407). Hence, we have~pi(s, τi) = [pi(j; s, τi)] = ~πie

Qiτi .
This probability distribution can be computed numerically
through the use ofuniformization, as first described by
Jensen(1953), which transforms a continuous-time Markov
chain with generator matrixQ into a discrete-time Markov
chain with transition probability matrixP = I + Q/q, with
q ≥ maxi qii. Through Taylor expansion, we get

~πeQt = ~π

∞∑
k=0

e−q·t (q · t)k

k!
Pk .

In practice, this infinite summation is truncated by using the
techniques ofFox & Glynn (1988) so that the truncation er-
ror is bounded by an a priori error toleranceε. The Fox–
Glynn method requiresq · t +

√
2q · t · o(

√
log 1/ε) + 3/2

matrix-vector multiplications. The dependence onε is gen-
erally negligible, so the time complexity isO(q·t·M), where
M is the time complexity for a single matrix-vector multi-
plication. For ann-phase Erlang distribution,M is O(n).

The belief distributionp(~ϕ; s, ~τ) may have some positive
probability mass associated with phase configurations where
a phase has reached the absorbing state. Absorption for a
phase-type distribution represents triggering of an event, but
we know whether an event has triggered or not. We there-
fore derive a normalized belief distribution̂p(~ϕ; s, ~τ) that
excludes any mass associated with the triggering of an event.

Action Selection
Given that we can compute a belief distribution over phase
configurations from an observation〈s, ~τ〉, we can use the
QMDP value method to compute the expected value of an
action setB ⊂ A in any given situation:

Q(s, ~τ , B) =
∑

~ϕ

p̂(~ϕ; s, ~τ) ·QMDP(s, ~ϕ, B)

The action set with maximumQ-value, according to this for-
mula, is the action set that should be selected for execution
when the observation〈s, ~τ〉 is made. Note that we use the
normalized belief distribution to computeQ-values.

This is straightforward application of theQMDP value
method. An observation includes time, however, which is

a continuous quantity in our case. The action choice may
therefore have to change continuously during execution, but
this is impractical. We suggest that belief updates are made
at a regular interval∆. Belief updates should also be made
every time an actual state transition occurs. This means that
the current action choice is reconsidered at the time of state
transitions, but also every∆ time units while remaining in a
specific state. Note thatpi(ϕi; s, t + ∆) = ~πie

QiteQi∆ =
pi(ϕi; s, t)eQi∆, so belief distributions can be updated at
each stage by using transient analysis withpi(ϕi; s, t) as the
initial-state distribution and∆ as time bound.

Empirical Evaluation
We now show, empirically, that phase tracking based on
transient analysis notably outperforms the phase-tracking
method proposed byYounes & Simmons(2004). We
also demonstrate the effect of state filtering for solving
continuous-time MDPs with phase transitions. The results
have been generated on a 3 GHz Pentium 4 PC running
Linux, and with an 800 MB memory limit set per process.

Our first test case is a variation of Howard’s “the Fore-
man’s Dilemma” (Howard 1960) and the preventive mainte-
nance problem used byYounes & Simmons(2004). The
model is a slight abstraction of the model shown in Fig-
ure 2, with the “stopped” and “running” states represented
by a single “working” state. Theservice action andreturn
event have exponential trigger-time distributions with rates
10 and1, respectively. The trigger-time distribution forfail
is W (1.6x, 4.5), a Weibull distribution representing an in-
creasing failure rate. We varyx between1 and 40, with
higher values meaning a higher expected failure time. The
reward rate is1 for the “working” state,−0.1 for the “ser-
viced” state, and0 for the “failed” state. Once failure occurs,
no more reward can be earned. The optimal policy is to en-
able the service action afterta time units in the “working”
state, whereta depends on the failure time distribution.

Because the problem is relatively simple, we can find the
optimal value forta using numerical function optimization
(and numerical integration over semi-infinite intervals for
our failure time distribution). This gives us a reference point
for the performance of the approximate solution technique
that uses phase-type distributions. The problem can also be
modeled and solved as an SMDP because no event can re-
main enabled across state transitions. Standard SMDP so-
lution techniques (Howard 1971), however, permit an ac-
tion to be enabled only immediately in a state (correspond-
ing to ta = 0) or not at all (ta = ∞). Figure 3 shows
the performance in terms of expected discounted reward
(α = − log 0.95), relative to optimal, for the phase-type
approximation technique and the standard SMDP solution
technique. The policies generated by the latter perform far
below optimal (asx increases, the mean time to failure in-
creases and discounting makes failure less of a factor). By
approximating the failure time distribution with an Erlang
distribution, better performance is achieved. Note, however,
that the reward earned by simulating phase transitions is still
far from optimal. The performance is much improved by
using the phase-tracking technique presented in this paper.
Better performance than for phase simulation is achieved
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Figure 3: Percentage of optimal expected reward for mainte-
nance problem with failure time distributionW (1.6x, 4.5).
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Figure 4: Average delay for enabling of theservice action
in the “working” state.

with fewer phases, and with8 phases and∆ = 0.5, the per-
formance is near optimal. The solution time for the models
with a phase-type approximation is only a few milliseconds.

Figure4 plots the optimal value forta, as well as the value
of ta for the different approximate solution techniques. The
standard SMDP solution results inta = 0, which means that
failure is typically avoided, but reward is wasted in the “ser-
viced” state. By simulating phase transitions, on the other
hand, theservice action is enabled too late on average. The
phase-tracking method results in values ofta much closer to
optimal. We plotta when using8 phases and two different
values of∆. Note that a lower value for∆ is not always
better, as might otherwise be expected. This is because the
phase-type distribution does not perfectly match the actual
failure time distribution. Currently, we have no method for
choosing the best∆ other than experimentation.

Our second test case is a system administration problem
used byYounes & Simmons(2004). In this problem, there
is a network ofm computers, with each computer being ei-
ther up or down. There is a crash event for each computer
with trigger-time distributionExp(1). A reboot action with
trigger-time distributionU(0, 1) is available for each com-
puter that is currently down. The reward rate for a state is
equal to the number of computers that are up. We assume
that at most one reboot action can be enabled at any time.

Unlike the previous test case, this is not an SMDP (except
for m = 1) since a reboot action may remain enabled across
state transitions, so we cannot solve this problem using stan-
dard SMDP techniques. The obvious solution is to reboot a
computer whenever it goes down, and wait until rebooting
is finished before going on to reboot another computer. We
get this exact solution by using phase-type approximations
of reboot time distributions and transient analysis to track
phases. It is sufficient to perform phase tracking only at the
time of state transitions (∆ = ∞). Figure5 plots the ex-
pected discounted reward for different number of phases and
phase-tracking techniques. We see, again, that our proposed
phase-tracking technique outperforms the technique based
on simulation of phase transitions. We achieve optimal per-
formance using only two phases.

Figure6 shows the effect of state filtering on the solution
time of structured policy iteration with ADDs for the system
administration problem. We can see that state filtering helps

reduce the planning time significantly, even when the num-
ber of phases is a power of2. Furthermore, withn = 5 and
without filtering, memory is exhausted already form = 8.
Note also that applying the filter in every iteration is bet-
ter than to pre-filter reward vectors and transition probabil-
ity matrices, because pre-filtering results in more complex
ADD representations or vectors and matrices.

Discussion
We have provided a new technique for tracking phase config-
urations during execution of phase-dependent policies. The
technique relies on efficient numerical methods for transient
analysis of Markov chains, so the computational burden
for phase tracking is small during execution. Furthermore,
we need to perform transient analysis only on the Markov
chains that represent phase-type distributions, which typ-
ically are very limited in size. We have demonstrated,
through experimental evaluation, that the proposed phase-
tracking method can result in near optimal performance (in
terms of expected reward) even with a small number of
phases. The new method clearly outperforms the method
proposed byYounes & Simmons(2004), which simulates
phase transitions during execution. These results are very
general, as they are not tied to a particular solution method
for MDPs. We have used structured value iteration in this
paper, and we have shown that MDPs with phase transi-
tions have specific structure that can be exploited to reduce
the planning time for this method, but any solution method
could be used to solve the MDP. For example, one could use
the approximate solution method presented byGuestrinet
al. (2003) to handle large state spaces.

MDPs with phase transitions arise, for example, when a
GSMDP is approximated with an MDP by approximating
each non-exponential trigger-time distribution with a phase-
type distribution. We have seen that a GSMDP with finite
state space can be modeled as ageneral-state(both discrete
and continuous state features) SMDP. While there has been
some interesting recent work on solving general-state MDPs
(Fenget al. 2004; Guestrin, Hauskrecht, & Kveton 2004),
these solution methods are not well suited for GSMDPs be-
cause they can only capture the state of the GSMDP at the
time of state transitions (discrete dynamics). To act op-
timally in a GSMDP, it is important to account for what
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Figure 5: Expected discounted reward for system adminis-
tration problem withm computers.
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Figure 6: Effect of state filtering for system administration
problem withn = 4 (×) andn = 5 (+).

happens between state transitions. These methods could be
combined with the use of phase-type distributions, however,
to solve general-state GSMDPs.
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